
Batch List-Decodable Linear 
Regression via Higher Moments

Problem Statement
▪ Linear Model  over :

(1) Feature Vector: .
(2)  Target Variable: , 
where .

Dβ* (X, y) ∈ (ℝd × ℝ)
X ∼ 𝒢
y = ⟨X, β*⟩ + ξ

ξ ∼ 𝒩(0,σ2)
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Prior Works

▪ -Corrupted Batched Sample Access: 
(1) With probability , draw a batch of  samples 
from .
(2) Otherwise, return a corrupted batch of  
adversarially chosen samples. 

α
α n

Dβ*
n

Goal: Given -corrupted batched sample access 
to  for some , 
return a short list of candidate regressors L 
such that  is small .

α
Dβ* α < 1/2

min
β∈L

∥β − β*∥

▪ In the non-batched setting i.e., batch size n=1, 
[Diakonikolas-Kane-Pensia-Pittas-Stewart’21] 
provides evidence that one must either: 
1.  need super-polynomial sample size of 

.
2.  or run in nearly exponential time in d.

dpoly(1/α)

▪ Subsequent work [Das-Jain-Kong-Sen’23] 
designs an efficient algorithm in super-linear 
batch-size setting, i.e.,  batch-size n = : 
returns a list of size  such that 

. 

Ω̃(1/α)
O(1/α2)

min
β∈L

∥β − β*∥ ≤ Õ(σα−1/2/ n)

What’s the minimum batch-size that permits 
polynomial time/sample learning algorithm?

Theorem. For any constant , if batch 
size  and the first degree-

 moments of the feature vector 
distribution  are SoS certifiably bounded,
there exists an algorithm with sample-size 
and runtime :
returns a list of size  such that 

. 

k ∈ ℤ+
n ≥ Ωk (α−1/k)

Θ(k)
𝒢

poly ((dn)k, α−1)
O(1/α)

min
β∈L

∥β − β*∥ ≤ Õ(σα−1/(2k)/ n)

Message: The runtime/sample needed 
interpolates smoothly from polynomial to 
super-polynomial as the batch size  shrinks.n

: polynomial time/sample 
algorithm exists. 
n ≈ α−1

: no polynomial time/sample 
algorithm exists. 
n = 1

: runtime/sample size 
scales with  
n ≈ α−1/k

(dn)k

Step 1: Estimate  for .̂β ≈ E[yX] (X, y) ∼ Dβ*
Use list-decodable mean estimation algorithm 
[Kothari-Steinhardt’17] to estimate the mean of 

the random variable  , 

where  is an inlier batch.

W =
1
n ∑

(X,y)∈B

yX

B

Yield a list  of size  including some 
with error . 

L O(1/α) ̂β
Ok (α−3/k∥β*∥2/n) ≪ ∥β*∥2/2

Step 2: Iterative improvements.
If we adjust the label via the transformations 

, this reduces the problem into 
another linear regression problem with 

.

y′￼ = y − ⟨ ̂β, X⟩

∥β′￼*∥2 ≤ ∥β*∥2/2

For each , adjust the labels based on  
and repeat Step 1.

β ∈ L β

Yield a list ’ of size  including some 
with error . 

L O(1/α2) ̂β′￼

≪ ∥β*∥2/4
Step 3: List Size Pruning.

Keep only  such that there exists a soft 
“cluster” of batches ensuring that any distant 
regressors cannot have smaller  loss under 
the soft cluster.

β

ℓ2

Goal: Given the list L’, returns a refined list of 
size  such that 

.
L* = O(1/α)

min
β∈L*

∥β* − β∥ ≈ min
β∈L′￼

∥β* − β∥

Remark. We provide evidence that if  
 then super-polynomial 

computation resources may be required.
n ≪ log(1/α)


