
Batch List-Decodable Linear
Regression via Higher Moments

Problem Statement
▪ Linear Model over :

(1) Feature Vector: .
(2) Target Variable: ,
where .

Dβ* (X, y) ∈ (ℝd × ℝ)
X ∼ 𝒢
y = ⟨X, β*⟩ + ξ

ξ ∼ 𝒩(0,σ2)

Sketch of the AlgorithmOur Results

Ilias Diakonikolas (University of Wisconsin Madison),
Daniel M. Kane (University of California San Diego),
Sushrut Karmalkar (Microsoft Research), Sihan Liu
(University of California San Diego), Thanasis Pittas
(University of Wisconsin Madison)
,

Prior Works

▪ -Corrupted Batched Sample Access:
(1) With probability , draw a batch of samples
from .
(2) Otherwise, return a corrupted batch of
adversarially chosen samples.

α
α n

Dβ*
n

Goal: Given -corrupted batched sample access
to for some ,
return a short list of candidate regressors L
such that is small .

α
Dβ* α < 1/2

min
β∈L

∥β − β*∥

▪ In the non-batched setting i.e., batch size n=1,
[Diakonikolas-Kane-Pensia-Pittas-Stewart’21]
provides evidence that one must either:
1. need super-polynomial sample size of

.
2. or run in nearly exponential time in d.

dpoly(1/α)

▪ Subsequent work [Das-Jain-Kong-Sen’23]
designs an efficient algorithm in super-linear
batch-size setting, i.e., batch-size n = :
returns a list of size such that

.

Ω̃(1/α)
O(1/α2)

min
β∈L

∥β − β*∥ ≤ Õ(σα−1/2/ n)

What’s the minimum batch-size that permits
polynomial time/sample learning algorithm?

Theorem. For any constant , if batch
size and the first degree-

 moments of the feature vector
distribution are SoS certifiably bounded,
there exists an algorithm with sample-size
and runtime :
returns a list of size such that

.

k ∈ ℤ+
n ≥ Ωk (α−1/k)

Θ(k)
𝒢

poly ((dn)k, α−1)
O(1/α)

min
β∈L

∥β − β*∥ ≤ Õ(σα−1/(2k)/ n)

Message: The runtime/sample needed
interpolates smoothly from polynomial to
super-polynomial as the batch size shrinks.n

: polynomial time/sample
algorithm exists.
n ≈ α−1

: no polynomial time/sample
algorithm exists.
n = 1

: runtime/sample size
scales with
n ≈ α−1/k

(dn)k

Step 1: Estimate for .̂β ≈ E[yX] (X, y) ∼ Dβ*
Use list-decodable mean estimation algorithm
[Kothari-Steinhardt’17] to estimate the mean of

the random variable ,

where is an inlier batch.

W =
1
n ∑

(X,y)∈B

yX

B

Yield a list of size including some
with error .

L O(1/α) ̂β
Ok (α−3/k∥β*∥2/n) ≪ ∥β*∥2/2

Step 2: Iterative improvements.
If we adjust the label via the transformations

, this reduces the problem into
another linear regression problem with

.

y′￼ = y − ⟨ ̂β, X⟩

∥β′￼*∥2 ≤ ∥β*∥2/2

For each , adjust the labels based on
and repeat Step 1.

β ∈ L β

Yield a list ’ of size including some
with error .

L O(1/α2) ̂β′￼

≪ ∥β*∥2/4
Step 3: List Size Pruning.

Keep only such that there exists a soft
“cluster” of batches ensuring that any distant
regressors cannot have smaller loss under
the soft cluster.

β

ℓ2

Goal: Given the list L’, returns a refined list of
size such that

.
L* = O(1/α)

min
β∈L*

∥β* − β∥ ≈ min
β∈L′￼

∥β* − β∥

Remark. We provide evidence that if
 then super-polynomial

computation resources may be required.
n ≪ log(1/α)

