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Problem Statement
« LInear Model Dﬁ* over (X,y) € ([Rd X R):

(1) Feature Vector: X ~ &.

(2) Target Variable: y = (X, f*) + &,
where & ~ A4(0,6%).

« -Corrupted Batched Sample Access:

(1) With probabillity a, draw a batch of n samples
from D g

(2) Otherwise, return a corrupted batch of n
adversarially chosen samples.

Goal: Given a-corrupted batched sample access
to Dy for some a < 1/2,

return a short list of candidate regressors L
such that min ||/ — f*|| is small .

pEL
Prior Works

= [n the non-batched setting I.e., batch size n=1,

[Diakonikolas-Kane-Pensia-Pittas-Stewart’21]
provides evidence that one must either:

1. need super-polynomial sample size of
dpoly(l/a)_

2. or run in nearly exponential time in d.

» Subsequent work [Das-Jain-Kong-Sen’23]
designs an efficient algorithm in super-linear

batch-size setting, i.e., batch-size n = Q(1/a):
returns a list of size O(1/ az) such that

min || — f*|| < O(ca™"?/1/n).

el

Our Results Sketch of the Algorithm

What's the minimum batch-size that permits Step 1: Estimate / ~ E[yX] for (X,y) ~ Dﬁ*'

polynomial time/sample learning algorithm?  Use list-decodable mean estimation algorithm
[Kothari-Steinhardt’17] to estimate the mean of

Message: The runtime/sample needed 1
the random variable W = — Z yX ,
n

Interpolates smoothly from polynomial to

super-polynomial as the batch size n shrinks. - (X.y)EB
where b is an inlier batch.
n = 1:no polynomial time/sample Yield a list L of size O(1/a) including some /3
algorithm exists. with error O, (06_3/k||ﬂ>x<||2/n) < ||f*,/2.
o~ o~ Vk cuntime /sample size Step 2: lterative improvements.
scales with (dn)" If we adjust the label via the transformations

y' =y — (,BA, X), this reduces the problem into

n= {1_ 3 PO_W”OmiaI time/sample another linear regression problem with
algorithm exists. 1571, < ||/*]],/2.

1

Theorem. For any constant k € Z,, if batch por each € L, adjust the labels based on /3
sizen > €2, (a‘l/k) and the first degree- and repeat Step 1.

®(k) moments of the feature vector Yield a list L’ of size O(1/a?) including some /3’
distribution & are SoS certifiably bounded,  with error < ||f*||,/4.

there exists an algorithm with sample-size Step 3: List Size Pruning.

. kK —1Y).
and runtime poly ((dn)*,a™"): Goal: Given the list L, returns a refined list of

returns a list of size O(1/a) such that size L* = O(1/a) such that
' er: A~y — 1/(2Kk) min ||p* — ~ min ||f* — [|].
min 18 — Bl < O(oa™"C01\/n). min |5* = P min |7* = P

Keep only [ such that there exists a soft

Remark. We provide evidence that if ) , . .
_ cluster” of batches ensuring that any distant
n < log(1/a) then super-polynomial regressors cannot have smaller £, loss under

computation resources may be required. the soft cluster.




