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Stability in Learning

Many standard ML & Optimization methods suffer from instability

E.g. may find very different local optima over two runs

May be heavily sample dependent (e.g. ERM)

Instability leads to critical failures in practice including

Privacy leakage: data dependence may reveal sensitive info!

Replicability crisis: instability may lead to non-replicable experiments

Lead to emergence of powerful theory of stability in learning:

1 Differential privacy [DMNS’06]: For all neighboring samples S ,S ′:

∀O : Pr
r
[A(S ; r) ∈ O] ≤ eε Pr

r
[A(S ′; r) ∈ O] + δ

I.e. (randomized) ouptuts of A(S) and A(S ′) are similarly distributed

2 Replicability [ILPS’22]: For independent samples S ,S ′ and random r :

∀D : Pr
S,S′∼Dn;r∼{0,1}∗

[A(S ; r) = A(S ′; r)] ≥ 1− ρ

A replicates over independent samples and shared randomness
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Stability and Randomness

Strong stability notions like DP are inherently randomized.

This is a bit of a problem... clean randomness is expensive!

US 2020 Census required (estimated) 90TB of randomness [GL20]

Moreover, corrupted/correlated randomness may leak privacy!

This motivates the study of randomness complexity in stability:

Can we build randomness-efficient stable algorithms?

Can we characterize # random bits needed for a given task?

Studied for basic estimation tasks in [DPWV’23,CSV’24]

Nothing known for more general settings (e.g. classification)
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Randomness Complexity and Global Stability

Fix a learning ‘task’ M (e.g. mean estimation, classification...)

Definition (Randomness Complexity)

The randomness complexity of M, CRep, is the smallest ℓ ∈ N s.t. ∃ a
> 1/2-replicable algorithm for M using ℓ random bits:

∀D : Pr
S ,S ′∼Dn,r∼{0,1}ℓ

[A(S ; r) = A(S ′; r)] >
1

2

We relate CRep to M’s global stability

Key notion in study of differentially private learning [BLM’20]

Roughly, the best replication probability of any determinstic Alg for M

∀D : Pr
S,S′∼D

[A(S) = A(S ′)] ≥ η
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Main Result: Characterizing Randomness Complexity

Define CGlob := log 1
ηmax

Theorem (Characterizing Randomness Complexity)

For any statistical task: CGlob ≤ CRep ≤ CGlob + 1.

Further, we can achieve 1− ρ replication in ⌈CGlob + log 1
ρ⌉ bits!

We prove a (weaker) analogous result for Differential Privacy

Real statement is more involved
Very roughly, result of the form:

CGlob − O(1) ≤ CDP ≤ CGlob + O(1)

Real version comes with several caveats

Both directions and CDP itself depend on privacy parameters
DP → Stability requires strong privacy guarantees (ε ≲ 1/

√
n)

Also depends on #samples & confidence (if not ‘user-private’)
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Application: Stable PAC Learning

Classical PAC-Learning framework [VC’74,Val’84] consists of:

Domain X (e.g. Rd), (binary) hypothesis class H (e.g. halfspaces)

Adversary: picks unknown distribution D over X × {0, 1}
Learner: Given samples from D, output h ∈ H w/ near-optimal error

Theorem (Stable PAC Learning)

For any (X ,H) with O(1) Littlestone dimension, ∃ replicable learner with

1 Sample Complexity: poly(ε−1, log(1/δ))

2 Random Bits: O
(
log 1

ε

)
Moreover, if Lit(H) = ∞, no replicable learner exists.

Implies first (agnostic) stable learners for, e.g.

Affine subspaces of Rd

Halfspaces with margin

Also gives first randomness-efficient DP alg for these problems!
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Thank you!

Thanks for listening
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