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Stability in Learning

@ Many standard ML & Optimization methods suffer from instability

e E.g. may find very different local optima over two runs
o May be heavily sample dependent (e.g. ERM)
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@ Instability leads to critical failures in practice including

e Privacy leakage: data dependence may reveal sensitive info!
e Replicability crisis: instability may lead to non-replicable experiments

@ Lead to emergence of powerful theory of stability in learning:
@ Differential privacy [DMNS'06]: For all neighboring samples S, 5"
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o May be heavily sample dependent (e.g. ERM)
@ Instability leads to critical failures in practice including
e Privacy leakage: data dependence may reveal sensitive info!
e Replicability crisis: instability may lead to non-replicable experiments
@ Lead to emergence of powerful theory of stability in learning:
@ Differential privacy [DMNS'06]: For all neighboring samples S, 5"

VO : PrlA(S;r) € O] < e PrlA(S";r) € O] + 6
o l.e. (randomized) ouptuts of A(S) and A(S’) are similarly distributed

@ Replicability [ILPS'22]: For independent samples S, S’ and random r:

VD : Pr AS:r)=A(S: N >1-
S’S,NDHW{O’I}*[ (Sir)=A(SnN]=1-p
o A replicates over independent samples and shared randomness
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Stability and Randomness

@ Strong stability notions like DP are inherently randomized.

@ This is a bit of a problem... clean randomness is expensive!
o US 2020 Census required (estimated) 90TB of randomness [GL20]
o Moreover, corrupted/correlated randomness may leak privacy!

@ This motivates the study of randomness complexity in stability:

o Can we build randomness-efficient stable algorithms?

o Can we characterize # random bits needed for a given task?

o Studied for basic estimation tasks in [DPWV'23,CSV'24]

o Nothing known for more general settings (e.g. classification)
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Randomness Complexity and Global Stability

o Fix a learning ‘task’ M (e.g. mean estimation, classification...)

Definition (Randomness Complexity)

The randomness complexity of M, Cgep, is the smallest / € Ns.t. Ja
> 1/2-replicable algorithm for M using ¢ random bits:

1
VD : P A(S;r) = A(S”; =
sl dASi) = AS NI > 5
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Randomness Complexity and Global Stability

o Fix a learning ‘task’ M (e.g. mean estimation, classification...)

Definition (Randomness Complexity)

The randomness complexity of M, Cgep, is the smallest / € Ns.t. Ja
> 1/2-replicable algorithm for M using ¢ random bits:

1
VD : P A(S;r) = A(S”; =
sl dASi) = AS NI > 5

o We relate Crep to M's global stability

e Key notion in study of differentially private learning [BLM'20]
o Roughly, the best replication probability of any determinstic Alg for M

VD Pr TA(S) = A(S)] =
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Main Result: Characterizing Randomness Complexity

1

TImax

@ Define Cgjop := log
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@ We prove a (weaker) analogous result for Differential Privacy
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Main Result: Characterizing Randomness Complexity

1

TImax

@ Define Cgjop := log

Theorem (Characterizing Randomness Complexity)

For any statistical task: Cgiop < Crep < Calob + 1.

@ Further, we can achieve 1 — p replication in [ Cgop + log %] bits!

@ We prove a (weaker) analogous result for Differential Privacy

o Real statement is more involved
e Very roughly, result of the form:

Caiob — O(1) < Cpp < Caiop + O(1)

@ Real version comes with several caveats

e Both directions and Cpp itself depend on privacy parameters
o DP — Stability requires strong privacy guarantees (¢ < 1/4/n)
o Also depends on #samples & confidence (if not ‘user-private')
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Application: Stable PAC Learning

o Classical PAC-Learning framework [VC'74,Val'84] consists of:
o Domain X (e.g. RY), (binary) hypothesis class H (e.g. halfspaces)
e Adversary: picks unknown distribution D over X x {0,1}
o Learner: Given samples from D, output h € H w/ near-optimal error
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Theorem (Stable PAC Learning)

For any (X, H) with O(1) Littlestone dimension, 3 replicable learner with
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Moreover, if Lit(H) = oo, no replicable learner exists.
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Application: Stable PAC Learning

o Classical PAC-Learning framework [VC'74,Val'84] consists of:
o Domain X (e.g. RY), (binary) hypothesis class H (e.g. halfspaces)
e Adversary: picks unknown distribution D over X x {0,1}
o Learner: Given samples from D, output h € H w/ near-optimal error

Theorem (Stable PAC Learning)

For any (X, H) with O(1) Littlestone dimension, 3 replicable learner with
@ Sample Complexity: poly(c~1,log(1/6))
@ Random Bits: O (log 1)

Moreover, if Lit(H) = oo, no replicable learner exists.

@ Implies first (agnostic) stable learners for, e.g.

o Affine subspaces of R
o Halfspaces with margin

@ Also gives first randomness-efficient DP alg for these problems!
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Thanks for listening




