

UniSim: A Unified Simulator for Time-Coarsened Dynamics of Biomolecules

Ziyang Yu, Wenbing Huang, Yang Liu

Background & Motivation

■ Molecular Dynamics (MD) simulations are essential in various fields

However, current MD methods still struggle with:

- Traditional Software: Efficiency
 - Small integration timestep $\Delta t (10^{-15} \text{s}) \longleftrightarrow \text{vital biological processes } (10^{-3} \text{s})$
- Deep Learning: Transferability
 - Mostly restricted to a single molecular domain
 - Unable to simulate in different chemical environments

Background & Motivation

- A better solution requires:
- Great Efficiency: time-coarsened dynamics
- Unified Simulation: one model for multiple domains
- Adaptability: simulations in different environments

Learns the push forward from \mathbf{X}_t to $\mathbf{X}_{t+\tau}$, where $\tau \gg \Delta t$.

Overview

- Unified Representation Model: leverages the cross-domain knowledge from pretraining
- Vector Field Model: follows time-coarsened dynamics using stochastic interpolants
- Force Guidance Kernel: helps adapt to different chemical environments

■ How to deal with the **scale discrepancy** between molecular systems?

Gradient-Environment Subgraph

- For each macromolecule $\mathcal G$ with more than 1,000 atoms
- Randomly select an atom *c* from the molecule
- Given $\delta_{\min} < \delta_{\max}$, define the following two subgraphs:

$$G_g = \{j | j \in \mathcal{G}, ||x_j - x_c||_2 < \delta_{\min} \},$$

$$G_e = \{j | j \in \mathcal{G}, ||x_j - x_c||_2 < \delta_{\max} \},$$

• \mathcal{G}_g will serve as the input in place of \mathcal{G} , and atoms in \mathcal{G}_e will participate in the calculation of training objectives

■ How to identify specific substructures (e.g., α -carbon in amino acids) under the premise of unified representation?

Atom Embedding Expansion

- Use the periodic table as the basic vocabulary $A_b \in \mathbb{R}^{A \times H}$
- Predefine the expanded dimension D and initialize the expanded vocabulary $A_e \in \mathbb{R}^{A \times D \times H}$
- For atom i of the molecular graph G, calculate the expanded weight vector:

$$\mathbf{n}_i = \sum_{j \in \mathcal{N}_i} \operatorname{rbf}(d_{ij}) \odot \mathbf{A}_b[j] \in \mathbb{R}^H,$$

 $\mathbf{w}_i = \operatorname{softmax}(\operatorname{lin}(\mathbf{A}_b[i], \mathbf{n}_i)) \in [0,1]^D,$

• The expanded embedding of atom *i* is given by:

$$\mathbf{z}_i = \ln(\mathbf{A}_b[i], \mathbf{w}_i^{\mathsf{T}} \mathbf{A}_e[i], \mathbf{n}_i) \in \mathbb{R}^H.$$

- How to deal with **inconsistent force labels** caused by using different force field parameters?
- How to deal with the mixture of equilibrium and off-equilibrium conformations?

Unified Multi-Head Pretraining

- For different states
 - Equilibrium: denoising pretraining
 - Off-equilibrium: pretraining with force labels
- For different force field parameters
 - **Multi-Head:** Use *K* output heads corresponding to *K* different force fields

- \blacksquare How to perform MD simulation in different **chemical environments** (e.g., solvation)?
- Notice: the potential $\varepsilon(\cdot)$ is a good reflection of the chemical environment.

Force Guidance Kernel

- We prove that, if b' = b, $\eta'_z = \eta_z + \alpha \gamma(t) \nabla \varepsilon_t$, then $p_t \propto q_t \exp(-\alpha \varepsilon_t)$ under some assumptions, where ε_t is called the intermediate potential that satisfies $\varepsilon_0 = \varepsilon_1 = \varepsilon$.
- ✓ Parameters of the vector field model are frozen => The force guidance kernel is pluggable!

■ Compare with time-coarsened dynamics baselines on peptides

MODELS	JS DISTANCE (↓)				VAL-CA (†)	CONTACT (↓)
	PWD	RG	TIC	TIC-2D	(1)	σσι(πιστ (ψ)
FBM	0.361/0.165	0.411/0.224	0.510/0.124	0.736/0.065	0.539/0.111	0.205/0.105
TIMEWARP	0.362/0.095	0.386/0.120	0.514/0.110	0.745/0.061	0.028/0.020	0.195/0.051
ITO	0.367/0.077	0.371/0.131	0.495 /0.126	0.748/0.055	0.160/0.186	0.174/0.099
SD	0.727/0.089	0.776/0.087	0.541/0.113	0.782/0.042	0.268/0.266	0.466/0.166
UniSim/g UniSim	0.332/0.135 0.328 /0.149	0.332/0.161 0.330 /0.189	0.510/0.115 0.510/0.124	0.738/0.064 0.731 /0.074	0.505/0.112 0.575 /0.139	0.162/0.076 0.157 /0.088

- ➤ All models perform the simulation for each molecular system with 1,000 frames.
- UniSim/g denotes only using the vector field model for inference, without the force guidance kernel.

■ Compare with time-coarsened dynamics baselines on proteins with fine-tuning

MODELS	JS DISTANCE (↓)			VAL-CA (†)	CONTACT (↓)
	PWD	RG	TIC	(1)	σστ(111στ (ψ)
FBM	0.519/0.023	0.597/0.121	0.621/0.152	0.012/0.007	0.252/0.039
ITO	0.588/0.027	0.775/0.042	0.624/0.121	0.052/0.008	0.428/0.020
SD	0.604/0.020	0.762/0.060	0.605/0.128	0.001/0.000	0.235/0.033
UniSim/g UniSim	0.508/0.021 0.506 /0.021	0.569/0.146 0.554 /0.149	0.543/0.141 0.542 /0.159	0.071/0.029 0.079 /0.033	0.171 /0.031 0.173/0.031

[✓] UniSim outperforms other baselines on comprehensive metrics, especially on validity.

■ Transferability to small molecules with the force guidance kernel

✓ The force guidance greatly helps UniSim comprehend the free energy landscape.

■ Long-timescale simulations for Alanine-Dipeptide (AD)

✓ UniSim robustly reproduces the free energy landscape and successfully explores key metastable states of the alanine-dipeptide system.

Thanks!