\_

Dueling Convex Optimization with General Preferences

Aadirupa Saha (UIC), Tomer Koren (Tel Aviv University, Google), Yishay Mansour (Tel Aviv University, Google)
International Conference on Machine Learning, 2025

/

{ DCO with General Preferences J

Motivation

*Many applications (recommender systems, search, ranking)

rely on pairwise preferences rather than absolute scores.

*Classical convex optimization assumes access to gradients or

function values.

*How to optimize if you only get noisy comparisons of pairs of

decisions?

Problem Setting

 Minimize a convex function f : R? —» R
 Feedback: only a noisy 1-bit preference between two points

* Formally, at each query of (w, w'):

Eo | w,w'] = p(f(w) — f(w"))
where
« 0€{£1}
e pis a transfer function mapping function differences to preferences

e The optimization algorithm never observes actual function values.

Why Hard?

*Pairwise preferences are even weaker than zero-order oracles.
*The transfer function p can distort magnitude information

about f.

*Existing methods typically assume simple transfers (sign,
kpolynomial) — this paper tackles arbitrary well-behaved p. /
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e Differentiable, monotonic

— 1.0 —— Error function
® p(O) =0 . ;gnf t
e Series expansion about 0 0.5
p(m) — Zzo:p anwn % 0.0r
.pZ]., a,p>0 —0.5}
e Bounded coefficients 10}

At round t:

e Crucially: PDD is agnostic to the form of p.

A No-Regret Algorithm for General DCO
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Structure of p

i Examples of Transfer Functions p(x)

—— Linear (clipped)
Logistic
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Projected Dueling Descent (PDD)

1. Sample a random direction ut

2. Compare two perturbed points around current iterate:

Ty = Wi + YU, Y = W — YUyt

3. Receive 1-bit feedback oy

4. Update in direction of “relative gradient” estimate:
gt = Ot * Uy

5. Project back onto feasible domain

Why Relative Gradient Descent?

Y ou cannot estimate the true gradient from preferences
Instead, you estimate a directional signal proportional to the
gradient, up to a polynomial distortion

{ Theoretical Performance Analysis }

Convergence of Convex+f=smooth functions

Let f : RY — R be convex, B-smooth, G-Lipschitz over D with diameter D.
Forany 0 < € < € = 54 min {dDZ, \/er/G} and § € (0,1),

2p
_ _ B € C,pPE
run Algorithm 1 with v = 108DV4 and 0 < n < B (80D 2~ 1r+1/3
D? 1
forT" > 2 (2 - 1) log 5 steps, then with probability at least 1 — 0,
In

31 <t < T such that f(w;) < f(w*) +¢, with sample complexity O(e *).

Algorithm for smooth & strongly convex functions
 Runs PDD in successive epochs with decreasing error tolerance
 Warm-starts each epoch from the previous solution
e Shrinks the domain radius across epochs

o Adapts learning rate and perturbation each epoch

Convergence with smooth & strongly convex functions

Let f : R — R be a-strongly convex, 3-smooth, and G-Lipschitz over D.
Assume minimizer w* € D.
Then Algorithm 2 (Epoch-PDD) returns w such that f(w) < f(w*) + €

with probability at least 1 — 9,
2pd2p—|—1 D4p

using at most O ( ) palrwise queries.
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PDD carefully controls the bias from this distortion. /
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