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Length Generalization

Length generalization is a phenomenon where a model trained on shorter length instances

of a task performs well on longer length instances.

When training transformers in a supervised setting, length generalization is empirically
observed for some ground-truth functions but not others Nogueira et al. (2021); Nye et al.
(2021); Shaw et al. (2021); Anil et al. (2022); Delétang et al. (2023); Ruoss et al. (2023);
Zhou et al. (2023); Jelassi et al. (2023); Zhou et al. (2024)

RASP-L Conjecture: when training transformers, ground-truth functions expressible by a
short RASP program are usually learned by the transformer in a length generalizable way
Zhou et al. (2023); Huang et al. (2024)

This work: In an abstract setting, when can we prove that there is a concrete function
F : N — N where if the ground-truth has description length ¢, then training inputs of

length at most F'(¢) are sufficient to ensure length generalization?



Setup

Hypothesis class F, subset of computable functions.

Encoding system R : {0,1}* — F is a computable mapping from descriptions to
functions. E.g. Rpea maps descriptions of DFAs under the standard encoding to the
Turing Machine (TM) computing that DFA. Let F* := {R(p) : p € {0,1}*}.

Length N Training Dataset: Dy (f.) := {(z, f«(x)) : 2 € {0,1}*,|z]| < N}

Learning Algorithm A : Dy(f.) — {0,1}* for any N >0, f. € F.

We say a learning algorithm A length-generalizably learns a function f, at input length N
w.r.t. encoding system R iff R(A(Dn(f+))) = fu.



Prior (Asymptotic) Results

Definition (Adapted from Gold (1967))

A function class F C FR admits length generalization in the limit w.r.t. encoding system R if
there exists a learning algorithm A such that for all f, € F, there exists a natural number N
such that for all N’ > N, A length-generalizably learns f, at input length N’.

Theorem (Adapted from Theorem 1.4 of Gold (1967))
For all encoding systems R, the function class F®* admits length generalization in the limit
> Length generalization in the limit is an asymptotic notion and Theorem 2 predicts length
generalization in the limit for the class of primitive-recursive functions (a very large class)

> We seek a finer grained (“non-asymptotic") result of how hard it is to length generalize for

various function classes



Non-Asymptotic Length Generalization

Complexity Measure C : {0,1}* — N, which is s.t. there exists a Turing Machine E which
enumerates descriptions p € {0,1}* in an non-decreasing order of C(p). E.g. C(p) = |p|.
Let CR(f.) := ming,. (=7, C(p).

Definition

A function class 7 C F® admits non-asymptotic length generalization w.r.t. encoding system
R and complexity measure C if there exists a learning algorithm A and a computable function
]\Afjf’f : N — N such that for all f, € F and for all N' > NS’I(CR(f*)), A
length-generalizably learns f, at input length N'.

Proposition

Regular languages F* admits non-asymptotic length generalization w.r.t. encoding system

R = Rpra and complexity measure Cpopa. More specifically, there exists a learning algorithm A
such that N%(c) < 2c—2 for all c € N.!

R
LFor Learning Algorithm A, let N (c) := N}’}- (c)



Minimum Complexity Interpolator

Hyperparameters: Complexity measure C, encoding system R

Input : Training set S for some f. € F*, S C {(z, f.(x)) | x € {0,1}*}
Output : i C
utpu arg  min ()

V(z,y)€S, y=R(p)(z)

Algorithm 1: Minimum-Complexity Interpolator (A™:%)

mci
Theorem

Given any encoding system R and complexity measure C, for all ¢ € N, it holds that

NER,C(C) = mfi‘nNE(c) =min{n € N:Vf £ f' € F® I € {0,1}5" s.t. f(x) # f'(z)}.

mci

We term the latter quantity as the length complexity for ¢ w.r.t. R.



Equivalent Definitions of Non-Asymptotic Length Generalization

Definition
The Language Equivalence Problem for encoding system R is the computational problem
where given any p, ¢ € {0,1}*, determine whether R(p) = R(q).

Lemma

For any encoding system R and complexity measure C satisfying the aforementioned
conditions, the Language Equivalence problem for R is decidable if and only if F* admits
non-asymptotic length generalization w.r.t. R,C.

Proposition

Let Rcrg be the encoding system for CFGs and Ccrg((G)) is the complexity measure that
maps a CFG G = (N,T,P,S ={0,1}) to |N|+ |T| + |P|. Then for any learning algorithm A,
the length complexity, NECFG : N = N, is not computably bounded.



C-RASP Yang & Chiang (2024)

Definition (C-RASP, (Yang & Chiang, 2024))

Boolean-Valued Operations Count-Valued Operations
Initial h(-i) :=1[z; = a] for a € {0,1} Partial Sum hg.i) := ps(h());
Boolean h(l) = —h{") Conditional h§i) = hgi/) ? hy”) : hy/”)
0 = 1 Addition A = h{) 4+ b
Sign hg'l) = l[hy '> 0 Subtraction hg.i) = h(i,) - h(.i”)
Constant hg’i) =1 Min/Max h§i) = mm(h ) h ))

h{? —max(h(” h“ )

Constant R =1




C-RASP!

Definition (C-RASP?)
With integer T, let C-RASPYT be the set of C-RASP programs where each program f has
parameters a,b,d € [-T,T], a > 0. For any n > 0, on input « € {0,1}", f computes:

f(z)=1la ps(z)p —b-n—d>0]

Theorem

For any T € N and ground-truth function f, € C-RASP*T, the Minimum-Complexity

c

Interpolator AZ:&

can length generalize given O(T?) inputs.



C-RASP?

Definition (C-RASP?)
With integers T and 1 < K < T2, let C-RASP%5T be the set of programs where each

program f has parameters 0 < z < T, Vi € [K], a®, 0 \; € {~T,..., T}, with a > 0 and
p(®)
a@

heads, {h(i)}ie[m, on the n prefixes of x:

€ (0,1). 2 For any n > 0, on input = € {0,1}", the first layer computes the values of K

, , i b
Vi € [n], Vi € [K], b = 1[ps(x); > ~5d]

The second layer computes the output: f(z) = 1[3 ;¢ Aips(hD),, > z - n].

Theorem (Main Result)

For any T € N, K < T2, and ground-truth function f, € C-RASP>T  the
.. . R.C . . .
Minimum-Complexity Interpolator A can length generalize given length O(T°X)) inputs.

2We place some additional technical assumptions on these parameters.



C-RASP?

Linear-Combo +
Thresholding

Partial-Sum

Linear-Combo(s)
+ Thresholding

Partial-Sum

A . o o o




(Warmup) Proof Sketch of C-RASP! Length Generalization

> By the characterization of A

R,C

mci !

we want to show that for any f # f/ € C-RASPLT,

there is a short string x (|z| < T?) where f(z) # f'(z).

> Suppose /() = Lips(@)j, > Llell, f/(x) = Lps(2)s > Llef) and & #

ps(x);

b

a’”

@) =sy
// ps(x); = sy

- (T ps(x.)r2)

sy =sy

TZ



Discrete and Continuous Test-Functions

Definition

A continuous test-function ), with respect to {si}ie[k] C QF, is a 1-Lipschitz, monotone
non-decreasing continuous function [0, 1] — [0, 1], with (0) = 0. The induced activations
(Bi(Y),..., Be()) of Y wirt. {s;}icp are: Vi€ [k, By(Y) == [ 1Y) > si - jldj.

s,

Discrete test-fn.

Continuous test-fn.

J

Note: Discrete Test-Functions have a one-to-one correspondence to strings € {0,1}*.



ain Result) Proot Sketch of C- ength Generalization
Main Result) Proof Sketch of C-RASP? Length General

Key Observation: C-RASP? programs are linear threshold functions over “first-layer

activations. " (ps(h(l))n ps(h™),, ps(h<K))n)_
. _ @ p()
Vj € [n],¥i € [K], h = 1[ps(z); > a(i)j]
ps(ht))n
flay =113 AP

i€[K]
Suppose f # f' € C-RASPZT . Proof Plan:
1. Characterize the set of all possible activations A C [0, 1]25X w.r.t. the first layers of both f
and f.
2. Let P C A be the subset of activations which distinguish f and f’. Show P is at least a
minimal size.

3. "Discretize" a particular continuous test-function YVeenter Which corresponds to P's
“center", to get a discrete test-function (string) X of short length that distinguishes f, f'.



Step 1: Characterize the set of all possible activations A C [0, 1] w.r.t. the first layers of
both f and f'.



Characterizing the Set of Possible First-Layer Activations

(i) i)y
> Let {si}ic) = {%}ie[K] U {%Z(i);}ie[[{] C (0,1), where K < k < 2K.
> Let A({si}icpr)) == {(B1(Y), ..., Br(¥)) : Y continuous test-function w.r.t {s;};ck}-
Lemma (Characterization of A({s;}ici))

For any {Si}ie[k] C (0,1), there are a finite number of k-dimensional convex polytopes
{Aj}jeper—y, such that:

{Sz}ze k:] U Aj

JE[Nk]

Moreover, if {s;}icix) C (0,1) are rational numbers with maximum denominator T, the faces of

each polytope A; is given by a precision poly (K, T)-linear inequality.



Depiction of A({s1,s2}) for the k = 2 Case

B, 2,1 @
©1) -
S1— 52
(, m)
(0,0) (1,0)



Proof Idea of Lemma Characterizing A({s;}icfi)

> Show that for every continuous test-function ), there exists another continuous
test-function ) where Vi € [k], B;()) = B;()’) and )’ follows one of 2*~1 possible
schema (blueprints).

> Each schema is characterized by the order which it crosses the & lines. Each is a
concatenation of curves where later curves may not cross as many lines as earlier curves.

P

ya
7 /

S1
S2

S3
Sa

Ss

Curve #1 Curve #2 Curve #3 Curve #4



Step 2: Show that the subset of activations, P C [0, 1]?¥, which cause f and f’ to disagree is
at least a minimal size.



Lower-bound on Size of Polytope P

Let Hi" = {(B1,..., Br) : Xic(x) MiBord(1.i) > 2} (activations causing f to return 1)
Let Hy := {(B1,...,By): > ie(x) MiBord(2,) < 2} (activations causing f” to return 0).
Suppose A({s;}icr) N Hy N HF # 0. Then there exists j, € [2571] where

P:=A; NHNHF #0,PC0,1]*, and where P satisfies:

Lemma

Consider a nonempty k-dimensional polytope P C R* with vertices V' and N faces. Suppose
the faces of P are each defined by a linear inequality over variables {B; };c|x], with integer
coefficients of magnitude at most prace, Where points on the face satisfy the linear inequality
with equality. For j € [N], define L; as the linear inequality for the jth face of P. Then, for
any j € [N], for any vertex x € V which does not lie on the jth face of P, we have the

following lower bound on the margin of x on the jth face of P.




Step 3: "Discretize" a particular continuous test-function YVeenter Which corresponds to P's
“center", to get a discrete test-function (string) X of short length that distinguishes f, f’.



Discretization of Continuous Test-Functions
Suppose polytope P := A;, N H" N HY C [0,1]¥, P # () and has vertices V.
There is a continuous test-function ). whose activations are (B;(Vx))ici) = Ii‘lf\ Y owev T
The margin of (B;(Jx))ic[x to any face of P is at least v = VT e R with
Pface = P01Y(K7 T)
We can discretize ), into a discrete test-function X of length n = O(% - T*) via the

following lemma:

Lemma
For any continuous test-function Yw.r.t. {s;};c(x) with p-precision activations, there exists an
no < O(p-T*) so that for any positive integer multiple n of ng, there exists a discrete

test-function X of length n so that:
. oly(K,T
vi € [k B.) - B(a)] < PUET)
For n large enough (i.e. O(% -T*)), X corresponds to string = € {0,1}" where
f(x) # f'(x), since X behaves similarly enough to Y, and ), distinguishes f, f'.



Summary

Fn. Class | Complexity of Ground-Truth Function | Length of Training Data Suff. to Generalize
DFAs number of states, ¢ 2c—2
CFGs description length, ¢ no computable bound in ¢ exists
C-RASP! precision, T' o(T?)
C-RASP? | precision, T, and number of heads, K O(TO(K))

Table: Summary of results: upper bounds on minimum length of binary strings in training data which

suffices for length generalization.




Future Directions

Extend results to 3-layer C-RASP functions
Extend results to C-RASP functions with bias terms (i.e. extension to Dyck-1)

Frameworks of Partial Length Generalization/Statistical Frameworks (E.g. Golowich et al.
(2025))
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