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Length Generalization

▶ Length generalization is a phenomenon where a model trained on shorter length instances
of a task performs well on longer length instances.

▶ When training transformers in a supervised setting, length generalization is empirically
observed for some ground-truth functions but not others Nogueira et al. (2021); Nye et al.
(2021); Shaw et al. (2021); Anil et al. (2022); Delétang et al. (2023); Ruoss et al. (2023);
Zhou et al. (2023); Jelassi et al. (2023); Zhou et al. (2024)

▶ RASP-L Conjecture: when training transformers, ground-truth functions expressible by a
short RASP program are usually learned by the transformer in a length generalizable way
Zhou et al. (2023); Huang et al. (2024)

▶ This work: In an abstract setting, when can we prove that there is a concrete function
F : N → N where if the ground-truth has description length c, then training inputs of
length at most F (c) are sufficient to ensure length generalization?



Setup

▶ Hypothesis class F , subset of computable functions.

▶ Encoding system R : {0, 1}∗ → F is a computable mapping from descriptions to
functions. E.g. RDFA maps descriptions of DFAs under the standard encoding to the
Turing Machine (TM) computing that DFA. Let FR := {R(p) : p ∈ {0, 1}∗}.

▶ Length N Training Dataset: DN (f∗) := {(x, f∗(x)) : x ∈ {0, 1}∗, |x| ≤ N}
▶ Learning Algorithm A : DN (f∗) → {0, 1}∗ for any N ≥ 0, f∗ ∈ F .

▶ We say a learning algorithm A length-generalizably learns a function f∗ at input length N

w.r.t. encoding system R iff R(A(DN (f∗))) = f∗.



Prior (Asymptotic) Results

Definition (Adapted from Gold (1967))
A function class F ⊆ FR admits length generalization in the limit w.r.t. encoding system R if
there exists a learning algorithm A such that for all f∗ ∈ F , there exists a natural number N
such that for all N ′ ≥ N , A length-generalizably learns f∗ at input length N ′.

Theorem (Adapted from Theorem I.4 of Gold (1967))
For all encoding systems R, the function class FR admits length generalization in the limit

▶ Length generalization in the limit is an asymptotic notion and Theorem 2 predicts length
generalization in the limit for the class of primitive-recursive functions (a very large class)

▶ We seek a finer grained (“non-asymptotic") result of how hard it is to length generalize for
various function classes



Non-Asymptotic Length Generalization

▶ Complexity Measure C : {0, 1}∗ → N, which is s.t. there exists a Turing Machine E which
enumerates descriptions p ∈ {0, 1}∗ in an non-decreasing order of C(p). E.g. C(p) = |p|.
Let CR(f∗) := minp:R(p)=f∗ C(p).

Definition
A function class F ⊆ FR admits non-asymptotic length generalization w.r.t. encoding system
R and complexity measure C if there exists a learning algorithm A and a computable function
N̂R,F

A : N → N such that for all f∗ ∈ F and for all N ′ ≥ N̂R,F
A (CR(f∗)), A

length-generalizably learns f∗ at input length N ′.

Proposition
Regular languages FR admits non-asymptotic length generalization w.r.t. encoding system
R = RDFA and complexity measure CDFA. More specifically, there exists a learning algorithm A
such that NR

A (c) ≤ 2c− 2 for all c ∈ N.1

1For Learning Algorithm A, let NR
A (c) := NR,FR

A (c)



Minimum Complexity Interpolator

Hyperparameters: Complexity measure C, encoding system R
Input : Training set S for some f∗ ∈ FR, S ⊆ {(x, f∗(x)) | x ∈ {0, 1}∗}
Output : arg min

p∈{0,1}∗

∀(x,y)∈S, y=R(p)(x)

C(p)

Algorithm 1: Minimum-Complexity Interpolator (AR,C
mci )

Theorem
Given any encoding system R and complexity measure C, for all c ∈ N, it holds that

NR
AR,C

mci
(c) = min

A
NR

A (c) = min{n ∈ N : ∀f ̸= f ′ ∈ FR,∃x ∈ {0, 1}≤n s.t. f(x) ̸= f ′(x)}.

We term the latter quantity as the length complexity for c w.r.t. R.



Equivalent Definitions of Non-Asymptotic Length Generalization

Definition
The Language Equivalence Problem for encoding system R is the computational problem
where given any p, q ∈ {0, 1}∗, determine whether R(p) = R(q).

Lemma
For any encoding system R and complexity measure C satisfying the aforementioned
conditions, the Language Equivalence problem for R is decidable if and only if FR admits
non-asymptotic length generalization w.r.t. R, C.

Proposition
Let RCFG be the encoding system for CFGs and CCFG(⟨G⟩) is the complexity measure that
maps a CFG G = (N,T, P, S = {0, 1}) to |N |+ |T |+ |P |. Then for any learning algorithm A,
the length complexity, NRCFG

A : N → N, is not computably bounded.



C-RASP Yang & Chiang (2024)



C-RASP1

Definition (C-RASP1)
With integer T , let C-RASP1,T be the set of C-RASP programs where each program f has
parameters a, b, d ∈ [−T, T ], a > 0. For any n > 0, on input x ∈ {0, 1}n, f computes:

f(x) = 1[a · ps(x)n − b · n− d > 0]

Theorem
For any T ∈ N and ground-truth function f∗ ∈ C-RASP1,T , the Minimum-Complexity
Interpolator AR,C

mci can length generalize given O(T 2) inputs.



C-RASP2

Definition (C-RASP2)
With integers T and 1 ≤ K ≤ T 2, let C-RASP2,K,T be the set of programs where each
program f has parameters 0 < z ≤ T , ∀i ∈ [K], a(i), b(i), λi ∈ {−T, . . . , T}, with a(i) > 0 and
b(i)

a(i) ∈ (0, 1). 2 For any n > 0, on input x ∈ {0, 1}n, the first layer computes the values of K
heads, {h(i)}i∈[K], on the n prefixes of x:

∀j ∈ [n],∀i ∈ [K], h
(i)
j = 1[ps(x)j >

b(i)

a(i)
j]

The second layer computes the output: f(x) = 1[
∑

i∈[K] λips(h(i))n > z · n].

Theorem (Main Result)
For any T ∈ N,K ≤ T 2, and ground-truth function f∗ ∈ C-RASP2,K,T , the
Minimum-Complexity Interpolator AR,C

mci can length generalize given length O(TO(K)) inputs.
2We place some additional technical assumptions on these parameters.



C-RASP2



(Warmup) Proof Sketch of C-RASP1 Length Generalization
▶ By the characterization of AR,C

mci , we want to show that for any f ̸= f ′ ∈ C-RASP1,T ,
there is a short string x (|x| ≤ T 2) where f(x) ̸= f ′(x).

▶ Suppose f(x) = 1[ps(x)|x| > b
a |x|], f

′(x) = 1[ps(x)|x| > b′

a′ |x|] and b
a ̸= b′

a′ .



Discrete and Continuous Test-Functions
Definition
A continuous test-function Y, with respect to {si}i∈[k] ⊂ Qk, is a 1-Lipschitz, monotone
non-decreasing continuous function [0, 1] → [0, 1], with Y(0) = 0. The induced activations
(B1(Y), . . . , Bk(Y)) of Y w.r.t. {si}i∈[k] are: ∀i ∈ [k], Bi(Y) :=

∫ 1

0
1[Y(j) > si · j]dj.

Note: Discrete Test-Functions have a one-to-one correspondence to strings x ∈ {0, 1}∗.



(Main Result) Proof Sketch of C-RASP2 Length Generalization
Key Observation: C-RASP2 programs are linear threshold functions over “first-layer
activations," (ps(h(1))n

n , ps(h(2))n
n , . . . , ps(h(K))n

n ).

∀j ∈ [n],∀i ∈ [K], h
(i)
j = 1[ps(x)j >

b(i)

a(i)
j]

f(x) = 1[
∑
i∈[K]

λi
ps(h(i))n

n
> z]

Suppose f ̸= f ′ ∈ C-RASP2,K,T . Proof Plan:

1. Characterize the set of all possible activations A ⊂ [0, 1]2K w.r.t. the first layers of both f

and f ′.
2. Let P ⊂ A be the subset of activations which distinguish f and f ′. Show P is at least a

minimal size.
3. "Discretize" a particular continuous test-function Ycenter which corresponds to P ’s

“center", to get a discrete test-function (string) X of short length that distinguishes f, f ′.



Step 1: Characterize the set of all possible activations A ⊂ [0, 1]2K w.r.t. the first layers of
both f and f ′.



Characterizing the Set of Possible First-Layer Activations

▶ Let {si}i∈[k] = { b(i)

a(i) }i∈[K] ∪ { (b(i))′

(a(i))′
}i∈[K] ⊂ (0, 1), where K ≤ k ≤ 2K.

▶ Let A({si}i∈[k]) := {(B1(Y), . . . , Bk(Y)) : Y continuous test-function w.r.t {si}i∈[k]}.

Lemma (Characterization of A({si}i∈[k]))
For any {si}i∈[k] ⊂ (0, 1), there are a finite number of k-dimensional convex polytopes
{Aj}j∈[2k−1], such that:

A({si}i∈[k]) =
⋃

j∈[Nk]

Aj

Moreover, if {si}i∈[k] ⊂ (0, 1) are rational numbers with maximum denominator T , the faces of
each polytope Aj is given by a precision poly(K,T )-linear inequality.



Depiction of A({s1, s2}) for the k = 2 Case



Proof Idea of Lemma Characterizing A({si}i∈[k])
▶ Show that for every continuous test-function Y, there exists another continuous

test-function Y ′ where ∀i ∈ [k], Bi(Y) = Bi(Y ′) and Y ′ follows one of 2k−1 possible
schema (blueprints).

▶ Each schema is characterized by the order which it crosses the k lines. Each is a
concatenation of curves where later curves may not cross as many lines as earlier curves.



Step 2: Show that the subset of activations, P ⊂ [0, 1]2K , which cause f and f ′ to disagree is
at least a minimal size.



Lower-bound on Size of Polytope P

Let H+
1 := {(B1, . . . , Bk) :

∑
i∈[K] λiBord(1,i) > z} (activations causing f to return 1)

Let H+
2 := {(B1, . . . , Bk) :

∑
i∈[K] λ

′
iBord(2,i) < z′} (activations causing f ′ to return 0).

Suppose A({si}i∈[k]) ∩H+
1 ∩H+

2 ̸= ∅. Then there exists j∗ ∈ [2k−1] where
P := Aj∗ ∩H+

1 ∩H+
2 ̸= ∅, P ⊂ [0, 1]k, and where P satisfies:

Lemma
Consider a nonempty k-dimensional polytope P ⊂ Rk with vertices V and N faces. Suppose
the faces of P are each defined by a linear inequality over variables {Bi}i∈[k], with integer
coefficients of magnitude at most pface, where points on the face satisfy the linear inequality
with equality. For j ∈ [N ], define Lj as the linear inequality for the jth face of P . Then, for
any j ∈ [N ], for any vertex x ∈ V which does not lie on the jth face of P , we have the
following lower bound on the margin of x on the jth face of P .

Lj(x) ⪆
1

(pface
√
k)k



Step 3: "Discretize" a particular continuous test-function Ycenter which corresponds to P ’s
“center", to get a discrete test-function (string) X of short length that distinguishes f, f ′.



Discretization of Continuous Test-Functions
▶ Suppose polytope P := Aj∗ ∩H+

1 ∩H+
2 ⊂ [0, 1]k, P ̸= ∅ and has vertices V .

▶ There is a continuous test-function Y∗ whose activations are (Bi(Y∗))i∈[k] =
1

|V |
∑

x∈V x.

▶ The margin of (Bi(Y∗))i∈[k] to any face of P is at least γ = 1
|V |

1
(pface

√
k)k

, with
pface = poly(K,T ).

▶ We can discretize Y∗ into a discrete test-function X of length n = O( 1γ · T k) via the
following lemma:

Lemma
For any continuous test-function Yw.r.t. {si}i∈[k] with p-precision activations, there exists an
n0 ≤ O(p · T k) so that for any positive integer multiple n of n0, there exists a discrete
test-function X of length n so that:

∀i ∈ [k], |Bi(Y)−Bi(X )| ≤ poly(K,T )

n

▶ For n large enough (i.e. O( 1γ · T k)), X corresponds to string x ∈ {0, 1}n where
f(x) ̸= f ′(x), since X behaves similarly enough to Y∗ and Y∗ distinguishes f, f ′.



Summary

Fn. Class Complexity of Ground-Truth Function Length of Training Data Suff. to Generalize
DFAs number of states, c 2c− 2

CFGs description length, c no computable bound in c exists
C-RASP1 precision, T O(T 2)

C-RASP2 precision, T , and number of heads, K O(TO(K))

Table: Summary of results: upper bounds on minimum length of binary strings in training data which
suffices for length generalization.



Future Directions

– Extend results to 3-layer C-RASP functions

– Extend results to C-RASP functions with bias terms (i.e. extension to Dyck-1)

– Frameworks of Partial Length Generalization/Statistical Frameworks (E.g. Golowich et al.
(2025))
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