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Methods: REDCLIFF-S Overview
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Methods: REDCLIFF-S Overview

Task 1: Forecast Factor Effect . Task 2: Estimate

REDCLIFF-S divides hypothesis
generation into two tasks: individual
factor learning and factor relevance

prediction.

This distinction between tasks is
reflected in the separation between
generative factors and the state

model. [ =
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Methods: REDCLIFF-S Structure

Both generative factors and the state model f
have direct access to the ‘input’ data. This ¢
allows us to (linearly) identify how each factor
depends on system history even if its generative

role (or ‘relevance’) is nonlinear in nature.
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Methods: REDCLIFF-S Structure

Both generative factors and the state model f
have direct access to the ‘input’ data. This ¢

allows us to (linearly) identify how each factor or:
depends on system history even if its generative | ; *
role (or ‘relevance’) is nonlinear in nature. j : o
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We forecast the system’s evolution with a
weighted superposition of each factor’s el e
forecasted effect based on the predicted 1 12| nc
system state




Methods: REDCLIFF-S Objective Function

System Evolution Forecasting Term
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Methods: REDCLIFF-S Objective Function

Penalty for Temporal Length of Predicted Causal Relationships
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Methods: REDCLIFF-S Objective Function
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Methods: REDCLIFF-S Objective Function
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Experiments on Synthetic Data: Highlights
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Example: REDCLIFF-S predictions on the 12 node,
11 edge, 5 factor system. Note the D-G-F pathis

similarto the true D-C-A-F path.
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Experiments on Synthetic Data: Highlights

Below, we chart the mean performance of REDCLIFF-S and several supervised algorithms in generating hypotheses for
the 12 node, 11 edge, 2 factor Synthetic System - across 10 random initializations, factors, and repeats - based on
several accuracy and causal similarity metrics. Performance improves with circle size (the bigger, the better).
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Findings on Real-World Mouse Model Data

Relative Importance of Predicted Causal
Relationships: Open Field vs Home Cage
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Relative Importance of Predicted Causal
Relationships: Social vs Object Preference
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