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Motivation and Assumptions

We seek to reduce the number of 
hypotheses that must be tested before 
finding causal relationships in 
neuroscientific applications. As such, we 
present : 
1. a novel approach to formulating 

hypotheses using deep generative 
factor models 

2. methods for including auxiliary 
(behavioral) labels 

We only assume data consists of 
regularly sampled (noisy) time series. We 
make no assumptions about underlying 
generative processes
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Methods: REDCLIFF-S Overview

REDCLIFF-S divides hypothesis 
generation into two tasks: individual 
factor learning and factor relevance 
prediction.

This distinction between tasks is 
reflected in the separation between 
generative factors and the state 
model.
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Methods: REDCLIFF-S Structure

Both generative factors and the state model 
have direct access to the ‘input’ data. This 
allows us to (linearly) identify how each factor 
depends on system history even if its generative 
role (or ‘relevance’) is nonlinear in nature. 

We forecast the system’s evolution with a 
weighted superposition of each factor’s 
forecasted effect based on the predicted 
system state
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Methods: REDCLIFF-S Objective Function
System Evolution Forecasting Term

Penalty for Temporal Length of Predicted Causal Relationships

Factor  Causal 
Prediction 
Similarity Penalty

Factor Weighting Sparsity Penalty System State Prediction Term
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Experiments on Synthetic Data: Highlights



Experiments on Synthetic Data: Highlights
Example: REDCLIFF-S predictions on the 12 node, 
11 edge, 5 factor system. Note the D-G-F path is 
similar to the true D-C-A-F path.



Experiments on Synthetic Data: Highlights
Below, we chart the mean performance of REDCLIFF-S and several supervised algorithms in generating hypotheses for 
the 12 node, 11 edge, 2 factor Synthetic System - across 10 random initializations, factors, and repeats - based on 
several accuracy and causal similarity metrics. Performance improves with circle size (the bigger, the better).



Findings on Real-World Mouse Model Data



Funding and Additional Resources
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