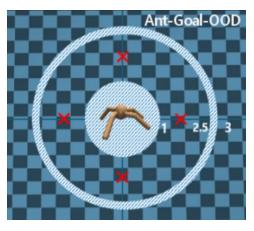
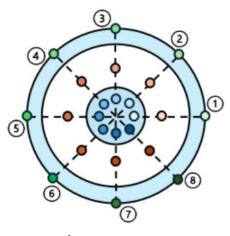
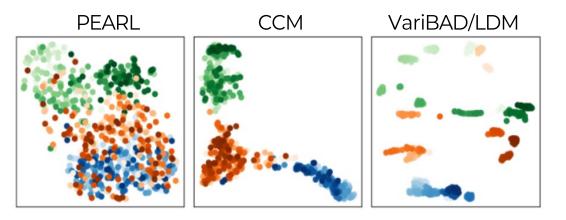
Task-Aware Virtual Training: Enhancing Generalization in Meta-Reinforcement Learning for Out-of-Distribution Tasks

Jeongmo Kim, Yisak Park, Minung Kim, Seungyul Han*
UNIST, Artificial Intelligence Graduate School (AIGS)


{ jmkim22, isaac1018, minungkim, syhan }@unist.ac.kr



Motivation


Insufficient task representation

> Ant-Goal-OOD

> Task Structure:
Goal Direction
Goal Distance

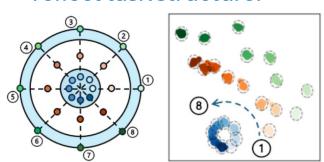
> Existing methods often fail to reflect the task structure!

Motivation: learning to well preserve the task structure even in OOD tasks

- Metric based representation learning
- > Virtual task learning

Contribution 1 - Metric Based Task Representation

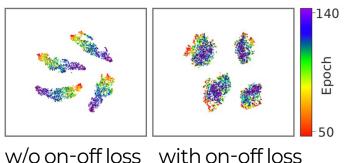
Task metric design based on Bisimulation metric


riangle Metric based task representation learning $\mathcal{L}_{ ext{bisim}}$

$$\mathcal{L}_{\text{bisim}}(\psi,\phi) = \mathbb{E}_{\mathcal{T}_{i},\mathcal{T}_{j} \sim p(\mathcal{T}_{\text{train}})} \left[\left(|\mathbf{z}_{\text{off}}^{i} - \mathbf{z}_{\text{off}}^{j}| - d(\mathcal{T}_{i},\mathcal{T}_{j};p_{\bar{\phi}}) \right)^{2} + \mathbb{E}_{(s,a,r,s') \sim D_{\text{off}}^{\mathcal{T}_{i}},(\hat{r},\hat{s}') \sim p_{\phi}(s,a,\mathbf{z}_{\text{off}}^{i})} \left[(r - \hat{r})^{2} + (s' - \hat{s}')^{2} \right] + (\mathbf{z}_{\text{on}}^{i} - \bar{\mathbf{z}}_{\text{off}}^{i})^{2} \right]$$

$$(2)$$

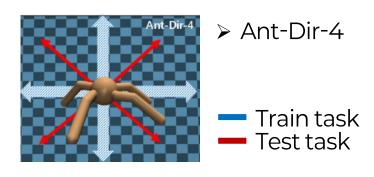
Bisimulation loss

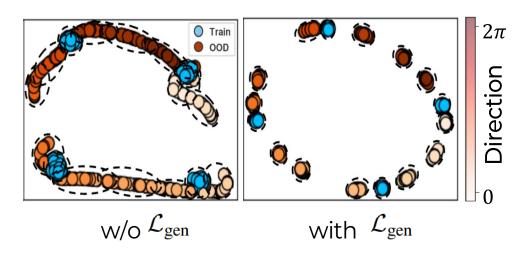

> learned task latents well reflect task structure!

Reconstruction loss

> train decoder to utilize task > train stable task latent \mathbf{z}_{on} metric measuring

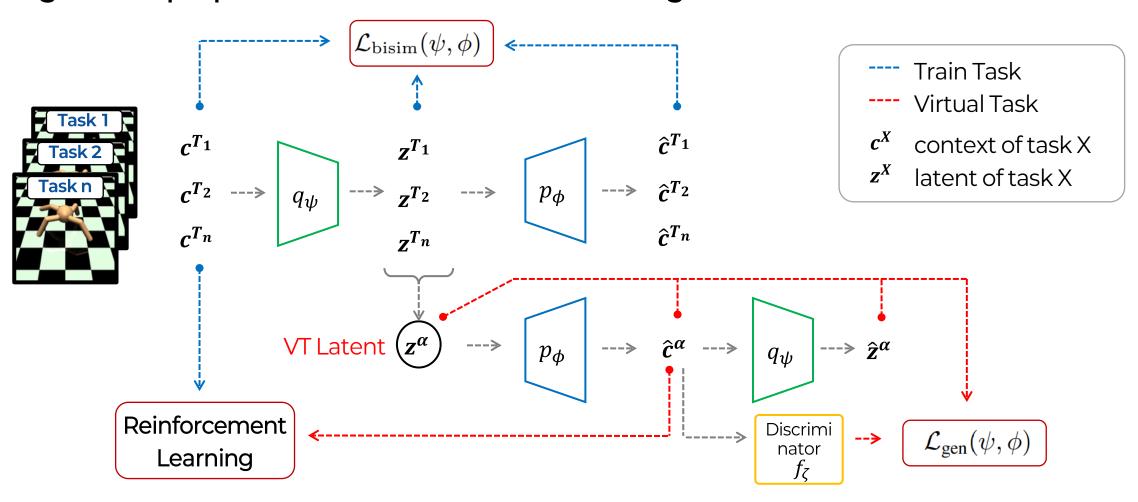
on-off latent loss

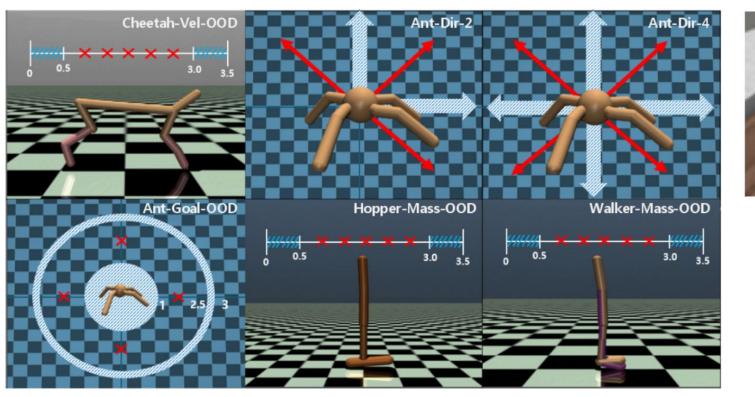

Contribution2 - Task Aware Sample Generation of Virtual Tasks

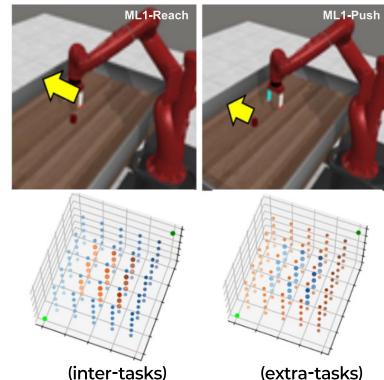

 \clubsuit Task aware virtual task sample generation and task preserving learning $\mathcal{L}_{\mathrm{gen}}$

$$\mathcal{L}_{\text{gen}}(\psi,\phi) = \mathbb{E}_{\hat{\mathbf{c}}^{\alpha} \sim p_{\phi}} \left[-f_{\zeta}(\hat{\mathbf{c}}^{\alpha}, \bar{\mathbf{z}}_{\text{off}}^{\alpha}) + \mathbb{E}_{\hat{\mathbf{z}}^{\alpha} \sim q_{\psi}(\cdot|\hat{\mathbf{c}}^{\alpha})} \left[(\hat{\mathbf{z}}^{\alpha} - \bar{\mathbf{z}}_{\text{off}}^{\alpha})^{2} \right] \right]$$

$$\text{WGAN generator loss} \qquad \text{task preserving loss}$$

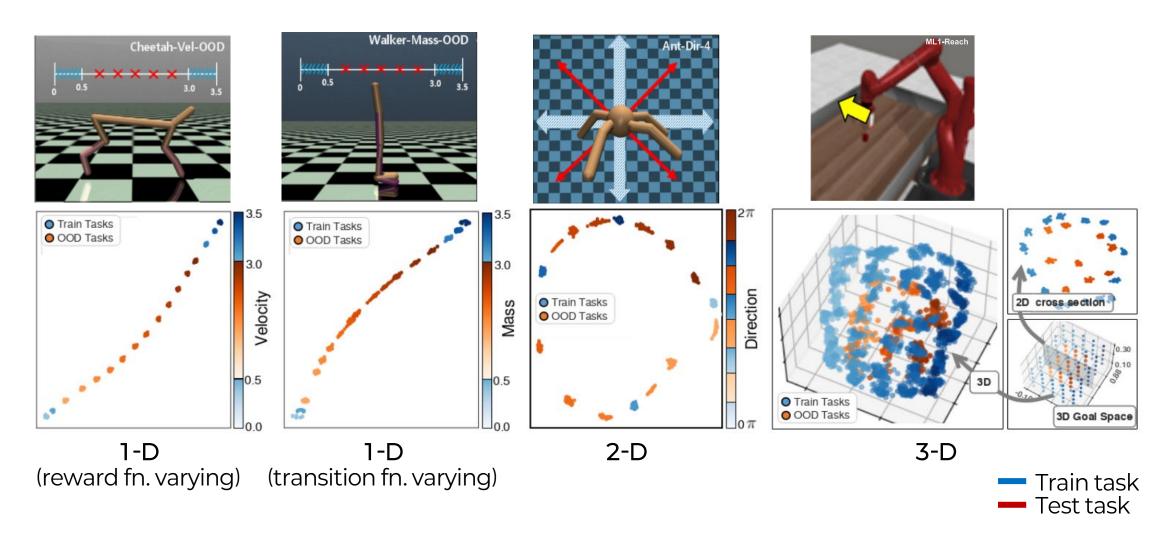

- > enables to generate realistic task samples
 - learn task latent to preserve task information of virtual task context


Method - Task Aware Virtual Training

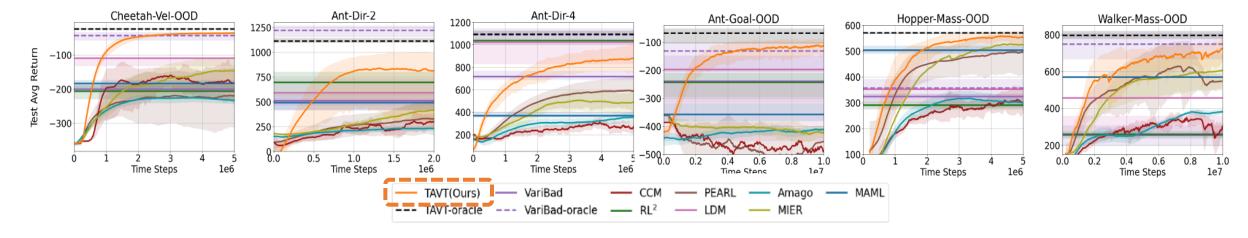

Agent can prepare OOD tasks in advance through TAVT

Environments with OOD test tasks

Environmental setup with Out-Of-Distribution test tasks


> MuJoCo Locomotion Task Environments

MetaWorld ML1 Task Environments


Visualization of Task Representation

TAVT well preserves all 1D, 2D and 3D task structure!

Performance on Out-Of-Distribution Tasks

- TAVT shows superior adaptation performance on various OOD test tasks!
- > MuJoCo Locomotion Task Environments

MetaWorld ML1 Task Environments

	Table 3. Average success rate for MetaWorld ML1 environments.								
	MAML	RL^2	VariBAD	LDM	PEARL	CCM	Amago	MIER	TAVT(Ours)
Reach	0.97±0.02	0.95±0.04	0.73±0.12	0.76±0.1	0.48±0.21	0.65±0.13	0.71±0.27	0.61±0.18	0.98±0.02
Reach-OOD-Inter	0.56±0.11	0.86±0.12	0.82±0.11	0.87±0.1	0.52±0.16	0.78±0.1	0.93±0.05	0.62±0.18	0.96±0.03
Reach-OOD-Extra	0.48±0.15	0.73±0.14	0.82±0.11	0.79±0.15	0.48±0.14	0.81±0.12	0.43±0.08	0.65±0.12	0.99±0.01
Push	0.94±0.03	0.98±0.02	0.88±0.09	0.83±0.11	0.61±0.11	0.18±0.08	0.87±0.11	0.59±0.13	0.98±0.03
Push-OOD-Inter	0.78±0.13	0.79±0.14	0.83±0.11	0.77±0.13	0.79±0.16	0.12±0.03	0.98±0.02	0.45±0.15	0.98±0.02
Push-OOD-Extra	0.55±0.13	0.38±0.12	0.65±0.09	0.72±0.11	0.55±0.18	0.15±0.04	0.83±0.11	0.61±0.15	0.92±0.08

Thank you!

See you soon on the Conference!