Stochastic Forward–Backward Deconvolution Training Diffusion Models with Finite Noisy Datasets

Haoye Lu Qifan Wu Yaoliang Yu

ICML 2025

Introduction

Deep learning-based generative models:

• text generation, text-to-image generation, protein structure prediction

Training powerful generative models requires web-scale data ...

- ChatGPT: large collections of text data, such as books, articles, and web pages
- Stable diffusion: LAION, more than 12 million text-image pairs

Scaling Laws:

bigger model + more data ⇒ better performance

Issues

Copyright: Training Datasets of this scale always have copyrighted contents

Privacy: They may contain sensitive personal information

Models could reproduce these samples during the sampling.

Example: Stable Diffusion

Consider an alternative method:

training generative models using data corrupted by noises.

Focus on: diffusion-based models and Gaussian noises.

Problem Setting

Given clean samples $\mathcal{D} = \{\mathbf{x}^{(k)}\}_{k=1}^N$ with $\mathbf{x}^{(k)} \sim p_{ ext{data}}$, training dataset

$$\mathcal{D}_{ ext{noisy}} = \{\mathbf{x}^{(k)} + \boldsymbol{\epsilon}^{(k)}\}_{k=1}^N, \quad \boldsymbol{\epsilon}^{(k)} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \sigma_{ au}^2 \mathbf{I}).$$

Diffusion models will be trained using $\mathcal{D}_{\mathrm{noisy}}$.

Note: all clean samples are corrupted only once.

Averaging multiple corrupted version \Rightarrow clean sample

This problem is hard to solve

Very pessimistic sample complexity $\Theta\left((\log N)^{-2}\right)$

 $N: \mathsf{Number} \ \mathsf{of} \ \mathsf{noisy} \ \mathsf{samples}.$

Takeaway: training models solely on noisy samples is *theoretically possible* but practically infeasible \implies pretraining on (small) copyright-free datasets is necessary.

Method: Stochastic Forward-Backward Deconvolution (SFBD)

Given:

Copyright-free clean samples (< 1%)

Personal/copyrighted corrupted samples (> 99%)

SFBD - Iteration 0

Step 1. Pretrain on the copyright-free clean samples to obtain diffusion model s_{θ_0} .

SFBD - Iteration 1

Step 1. Finetune \mathbf{s}_{θ_0} on the denoised samples $\mathcal{D}^{(1)}$ to obtain diffusion model \mathbf{s}_{θ_1} .

SFBD - Iteration k . . .

Step 1. Finetune $\mathbf{s}_{\theta_{k-1}}$ on the denoised samples $\mathcal{D}^{(k)}$ to obtain diffusion model \mathbf{s}_{θ_k} .

We proved that

$$q^{(k)} o p_{\mathrm{data}}$$
 as $k o \infty$

at a rate of $\mathcal{O}(M_0/\sqrt{k})$, where M_0 depends on the pretrained model \mathbf{s}_{θ_0} :

ullet $M_0 o 0$ if the pretrained model better estimates p_{data} .

Empirical Results

Pretraining was performed on 50 clean images.

Method	CIFAR10 (32 x 32)			CelebA (64 × 64)		
	$\overline{\sigma_{\zeta}}$	Pretrain	FID ↓	σ_{ζ}	Pretrain	FID ↓
DDPM (Ho et al., 2020)	0.0	No	4.04	0.0	No	
DDIM (Song et al., 2021a)	0.0	No	4.16	0.0	No	6.53
EDM (Karras et al., 2022)	0.0	No		-		
SURE-Score (Aali et al., 2023)	0.2	Yes	132.61	-	-	-
EMDiff (Bai et al., 2024)	0.2	Yes	86.47	-		
TweedieDiff (Daras et al., 2024)	0.2	No	167.23	0.2	No	246.95
TweedieDiff (Daras et al., 2024)	0.2	Yes	65.21	0.2	Yes	58.52
SFBD (Ours)	0.2	Yes	13.53	0.2	Yes	6.49

SFBD also performs well for large σ_{ζ} .

H. Lu

Q. Wu

Y. Yu

Thank you!

Paper Link:

arXiv:2502.05446