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Motivation



Integrating CALGB 9633 with NCDB External Controls

Scientific Objective: Evaluate the efficacy of adjuvant chemotherapy
vs. observation after surgery in Stage IB non–small-cell lung cancer
patients (Strauss et al., 2008).

CALGB 9633 trial: Underpowered, took 12 years due to slow accrual.

National Cancer Database (NCDB): Large database including patients
under observation (external controls), which may have covariate shift
and outcome incomparability.

A hybrid controlled trial: CALGB 9633 trial + NCDB external controls
(ECs) to improve treatment effect estimation and inference.
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Covariate Shift
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ECs are older with larger tumors than CALGB 9633 patients.
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Outcome Incomparability
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After adjusting for covariate shift (by matching and comparing within
similar sampling scores)

• some ECs are comparable
• some ECs exhibit lower Y than RCT controls
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Challenge and Contribution

• RCT-only: underpowered.
• RCT+EC: estimation bias and inflated Type I error from covariate
shift and outcome incomparability.

• Covariate shift has been addressed by propensity score methods.
• Our contributions:

• Conformal selective borrowing for outcome comparability.
• Fisher randomization tests to control Type I error.
• Power gain via combining both methods.
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Problem Setup & Benchmarks



Causal Inference Framework

Source Total Treated (A = 1) Control (A = 0)

CALGB 9633 (S = 1) 335 (nR) 167 (n1) 168 (n0)
NCDB (S = 0) 11,446 (nE ) – 11,446

Outcome Y: 3-year Restricted Mean Survival Time min(T, 3).

Covariates X: Sex, age, race, histology, and tumor size.

Data: {Yi, Xi,Ai, Si}ni=1, n = nR + nE .

Potential Outcomes: Y(1), Y(0).

Estimand: Average treatment effect (ATE) in the RCT population,

τ = E{Y(1)− Y(0) | S = 1}.
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Benchmark 1: No Borrow AIPW

Assumption 1: Identification (Held by RCT Design)
1.(Consistency) Y = AY(1) + (1− A)Y(0).

2.(Positivity) 0 < e(x) < 1 for all x with fX|S(x|1) > 0, where fX|S(x|s) is
the conditional density of X.

3.(Randomization) Y(a) ⊥⊥ A | (X, S = 1), for a = 0, 1.

Propensity Score: e(X) = P(A = 1 | X, S = 1).

Outcome Model: µa(X) = E{Y(a) | X, S = 1}.

No Borrow AIPW (RCT-only, covariate-adjusted ATE estimator)

τ̂R =
1
nR

n∑
i=1

Si
[
µ̂1,R(Xi) +

Ai
ê(Xi)

{Yi − µ̂1,R(Xi)}

− µ̂0,R(Xi)−
1− Ai
1− ê(Xi)

{Yi − µ̂0,R(Xi)}
]
.
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Benchmark 2: Borrow AIPW

Assumption 2: Mean Exchangeability of ECs (Relaxed Later)

E{Y(0) | X, S = 0} = E{Y(0) | X, S = 1}.

Sampling Score: π(X) = P(S = 1 | X).
Borrow AIPW (RCT + All ECs, address covariate shift)

τ̂R+E =
1
nR

n∑
i=1

[
Si µ̂1,R(Xi) + Si

Ai
ê(Xi)

{Yi − µ̂1,R(Xi)} − Si µ̂0,R+E(Xi)

− π̂E (Xi)
Si(1− Ai) + (1− Si )̂rE(Xi)

π̂E (Xi){1− ê(Xi)}+ {1− π̂E (Xi)}̂rE (Xi)
{Yi − µ̂0,R+E (Xi)}

]
.

• Outcome modeling using both RCT data and ECs.

• Inverse sampling score weighting to align ECs’s covariate distribution.

• Inverse variance weighting by r(X) = V{Y(0)|X,S=1}
V{Y(0)|X,S=0} for maximal efficiency.

• Doubly robust and locally efficient (Li et al., 2023); biased if Assumption 2 fails.
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Conformal Selective Borrowing



Testing Individual Outcome Comparability

For EC j ∈ E , define individual bias as bj ≡ Yj − E{Y(0) | X, S = 1}.

Hj0 : bj = 0 is testable with RCT controls.

Conformal p-value (Vovk, Gammerman, and Shafer, 2005)

1. Split RCT controls into calibration set C1 and training set C \ C1.
2. Train f̂−C1(x) on C \ C1 to predict comparable EC outcomes.
3. Measure the comparability of EC j to f̂−C1(x) by conformal score

sj = |Yj − f̂−C1(Xj)|.

4. Calibrate the conformal score using si = |Yi − f̂−C1(Xi)| for i ∈ C1,

pj =
∑

i∈C1 I(si ≥ sj) + 1
|C1|+ 1 .

Boosting performance: (i) Split→ CV+ (Barber et al., 2021), (ii) Absolute Residual→
Conformalized Quantile Regression (Romano, Patterson, and Candès, 2019). 9



Conformal Selective Borrow AIPW

Full EC set E → Selected EC set Ê(γ) = {j ∈ E : pj > γ}.
Borrow AIPW τ̂R+E → a class of estimators indexed by γ:

τ̂γ =
1
nR

n∑
i=1

[
Si µ̂1,R(Xi) + Si

Ai
ê(Xi)

{Yi − µ̂1,R(Xi)} − Si µ̂0,R+Ê(γ)(Xi)

− π̂Ê(γ)(Xi)
Si(1− Ai) + (1− Si)I{i ∈ Ê(γ)}r̂Ê(γ)(Xi)

π̂Ê(γ)(Xi){1− ê(Xi)} + {1− π̂Ê(γ)(Xi)}r̂Ê(γ)(Xi)
{Yi − µ̂0,R+Ê(γ)(Xi)}

]
.

Examples

1. No Borrow AIPW τ̂R = τ̂1 since Ê(1) = ∅.
2. Borrow AIPW τ̂R+E = τ̂0 since Ê(0) = E .
3. Conformal Selective Borrow AIPW τ̂γ̂ with γ̂ minimizing M̂SE(γ).

• MSE(γ) = {E(τ̂γ) − τ}2 + V(τ̂γ).

• Use τ̂1 (consistent for τ ) to approximate squared bias:

{E(τ̂γ − τ)}2 ≈ {E(τ̂γ − τ̂1)}2 = E(τ̂γ − τ̂1)
2 − V(τ̂γ − τ̂1).

• Estimate E(τ̂γ − τ̂1)
2 via (τ̂γ − τ̂1)

2 . Estimate V(τ̂γ − τ̂1) and V(τ̂γ) via bootstrap.
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Simulation*: EC Selection
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For various levels b of hidden bias, CSB AIPW discards biased ECs
conditional on all measured covariates.

*See appendix for simulation setup 11



Real Data: EC Selection
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CSB AIPW selects ECs with conditional outcomes closer to RCT
controls, reducing hidden bias beyond balancing X alone.
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Fisher Randomization Test



Randomization Inference in Hybrid Controlled Trials

Fisher Randomization Test (Fisher, 1935)
1. Sharp Null: H0 : Yi(0) = Yi(1), ∀i ∈ R, imputing all Yi(a).
2. Test Statistic: Compute T(Aobs) for actual assignment Aobs.
3. Analyze as You Randomize:
• Generate Abi for RCT patients per the actual randomization procedure.
• Keep Abi ≡ 0 for ECs, as they remain fixed during randomization in RCT.

4. Compute p value: Repeat for B iterations and compute:

p̂FRT =

∑B
b=1 I{T(A

b) ≥ T(Aobs)}+ 1
B+ 1 .
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FRT: A Backup for Strict Type I Error Control

Finite-Sample Exact: Valid for any sample size.

Model-Free: Remains valid even if models are misspecified.

Valid for Any Test Statistic:

• Bias-aware: If T is Borrow AIPW that is biased without
Assumption 2, FRT replicates the biased distribution.

• Post-selection valid: If T is CSB AIPW, FRT accounts for selection
uncertainty by varying Ê(γ) with Ab.
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Simulation: Power Curves of FRTs
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• FRTs control type I error at τ = 0 for any test statistic.
• CSB AIPW achieves the highest power.
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Real Data: Inference Results
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• CSB AIPW improves borderline non-significant No Borrow AIPW.
• CSB AIPW mitigates overly large Borrow AIPW estimates.
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Conclusion



Takeaway Messages

1. Conformal Selective Borrow AIPW addresses both covariate and
outcome incomparability of external controls.

• Finite-sample exact, model-free, selective borrowing.

2. Fisher randomization test with Conformal Selective Borrow AIPW
as a test statistic controls type I error and gains power when EC
bias is negligible or detectable.

• Finite-sample exact, model-free, post-selection valid inference.

3. User-friendly R package intFRT available at

github.com/ke-zhu/intFRT
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Thank you!
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Simulation Setup

Sample Sizes (n1,n0,nE) = (50, 25, 50)

Covariates X ∼ Unif(−2, 2), p = 2

Sampling S ∼ Bernoulli(π(X))
π(X) = {1+ exp (η0 + XTη)}−1, η = (0.1, 0.1)

Assignment A ∼ Bernoulli(n1/nR) for S = 1
A = 0 for S = 0

Potential Outcomes (S = 1) Y(0) = XTβ0 + ε, Y(1) = 0.4+ XTβ1 + ε

ε ∼ N(0, 1), β0 = (1, 1), β1 = (2, 2)

Potential Outcomes (S = 0) (i) No Hidden Bias b = 0
Y(0) = XTβ0 + 0.5ε
(ii) Half of ECs with Hidden Bias b = 1, 2, . . . , 8
For 50% of ECs, Y(0) = −b+ XTβ0 + 0.5ε

Observed Outcomes Under H1: Y = AY(1) + (1− A)Y(0)
Under H0: Y = Y(0)
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