

UniMate: A Unified Model for Mechanical Metamaterial Generation, Property Prediction, and Condition Confirmation

Wangzhi Zhan¹, Jianpeng Chen¹, Dongqi Fu², Dawei Zhou¹

¹Virginia Tech, ²Meta AI

Road Map

I. Background

- Mechanical Metamaterial Preliminary
- > Challenges in Metamaterial Design

II. Methodology

- > Framework Overview
- Modality Alignment Module
- > Synergetic Generation Module

III. Results and Analysis

- Performance Evaluation
- Case Study

IV. Conclusion

Background – Mechanical Metamaterial Preliminary

- ☐ **Definition:** Artificially engineered materials whose properties arise from their internal structure rather than chemical composition.
- ☐ Key Characteristics:
- **Programmability:** Internal structures can be designed to exhibit tailored responses.
- **Tunability:** Properties such as stiffness, density, and wave propagation can be adjusted through structural design.
- **Unconventional Behavior:** Capable of achieving properties not typically found in natural materials.
- ☐ **Applications:** Aerospace, biomedical implants, energy absorption systems, etc.

Background – Challenges in Metamaterial Design

□ Data Complexity:

• Three modalities: topology (3D graphs), density, and properties.

☐ Task Diversity:

• property prediction, topology generation, condition confirmation.

☐ Lack of Benchmarks:

• Existing models focus only on subsets of tasks; Inadequate datasets for comprehensive evaluation.

0.2723,0.2723,0.2723]

Methodology – Framework Overview

☐ Goal:

• Unified modeling of all metamaterial modalities and tasks.

☐ Two Key Modules:

- Modality Alignment Module: Compresses and aligns modalities.
- Synergetic Generation Module: Generates unknown modalities via guided diffusion.

☐ Input/Output:

 Accepts any two modalities, completes the third.

Methodology – Modality Alignment Module

- ☐ Aligning Diverse Modalities:
- **Step 1**: Encode each modality into discrete latent tokens.
- **Step 2**: Map all tokens into shared latent space.
- **Step 3**: Align using Tripartite Optimal Transport (TOT).

□Benefit:

 Establishes coherent joint representation across structure, condition, and property.

Methodology – Synergetic Generation Module

□Core Idea:

- Predict missing modality using known tokens as context.
- ☐ **Method** (Partially Frozen Diffusion):
- Noise is added only to missing tokens
- Known tokens remain unchanged through transformer layers.

□Why It Matters:

• Enhances robustness, task flexibility, and cross-modal generation.

Results and Analysis – Performance Evaluation

☐ Evaluation Data & Metrics:

- **Dataset**: 15000 samples (material structure, properties and manufacturing condition), developed by our team.
- **F_qua:** structure generation quality.
- **F_cond:** condition matching error.
- **NRMSE_pp:** property prediction error.
- NRMSE_cc: condition confirmation error.

□ Baseline Models:

• State-of-the-art material structure generation / property prediction models are included into the self-evaluation.

Category	Models		
Generation-Only	CDVAE, SyMat		
Prediction-Only	Equiformer, ViSNet, MACE+VE		
Dual-Task (Prediction + Gen.)	UniTruss		
UNIMATE (ours)	Handles all 3 tasks in a unified framework		

☐ Results and Remarks:

- UniMate compared with second best model: **80.2% less error** in generating material based on property, **5.1% less error** in predicting material properties, **50.2% less error** in confirming manufacturing condition.
- The strong **cross-modality alignment** of UniMate enables superior performance across diverse tasks.

Table 2. Effectiveness Comparison

Tuble 2. Effectiveness comparison.					
	TOPO. GEN. TASK		PROP. PRED. TASK	COND. CONFIRM. TASK	
Model	$\overline{F_{ ext{qua}}}$	$F_{ m cond}$	$NRMSE_{pp}$	$NRMSE_{cc}$	
	$(\times 10^{-2}, \downarrow)$	$(\times 10^{-2}, \downarrow)$	$(\times 10^{-2}, \downarrow)$	$(\times 10^{-2}, \downarrow)$	
CDVAE (XIE ET AL., 2022)	19.23	32.71	N/A	N/A	
EQUIFORMER (LIAO & SMIDT, 2022)	N/A	N/A	5.31	38.05	
VISNET (WANG ET AL., 2024)	N/A	N/A	3.12	10.43	
SYMAT (LUO ET AL., 2024B)	16.94	33.37	N/A	N/A	
UNITRUSS (ZHENG ET AL., 2023A)	19.43	33.77	2.71	8.89	
MACE+VE (GREGA ET AL., 2024)	N/A	N/A	2.57	9.09	
UNIMATE (OURS)	2.74	7.81	2.44	4.43	

Results and Analysis – Case Study

- ☐ **Application Task:** Designing for light material with high stiffness.
- ☐ **Setup**: Fixed low density (e.g., o.3), varied target stiffness.
- ☐ **Findings**: Model generates topology transitions from intermediate to known; Able to interpolate and propose **structures unseen by the model.**

Conclusion

☐ Summary of Work:

• We proposed **UniMate**, a unified model that integrates multiple data modalities to support diverse tasks in mechanical metamaterial design.

☐ Key Contributions:

- Formulated metamaterial design as a multi-modal completion task.
- Proposed a unified model with modality alignment and synergetic diffusion.
- Built a benchmark dataset with standardized metrics.

☐ Impact of Work:

- Enables flexible and condition-aware inverse design.
- Advances data-driven methods for complex material systems.

Thanks!

Wangzhi Zhan

6/15/2025

