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Background — Mechanical Metamaterial Preliminary

U Definition: Artificially engineered materials
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Background — Challenges in Metamaterial Design

D Data Complexity: i Trinity Correlation i:\ l\(lletamaterial Design \\ ( Example )
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Methodology — Framework Overview

1 Goal:
* Unified modeling of all metamaterial

mOdahtleS and taSkS' Modality Alignment Module Synergetic Generation Module
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d Input/Output:
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the third.




Methodology — Modality Alignment Module

] Aligning Diverse Modalities:
* Step 1: Encode each modality into

. Modality Alignment Module Synergetic Generation Module
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representation across structure,
condition, and property.




Methodology — Synergetic Generation Module

dCore Idea:
* Predict missing modality using
kn own t Ok ens as context. Modalit;: Alignment Module . Synergetic Generation Module
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* Enhances robustness, task flexibility,
and cross-modal generation.




Results and Analysis — Performance Evaluation

0 Evaluation Data & Metrics: 0 Baseline Models:
* Dataset: 15000 samples (material structure, properties » State-of-the-art material structure generation / property prediction
and manufacturing condition), developed by our team. models are included into the self-evaluation.
« F_qua: structure generation quality. Category Models
* F_cond: condition matching error. Generation-Only CDVAE, SyMat
Prediction-Only Equiformer, ViSNet, MACE+VE

«  NRMSE_ pp: property prediction error.

Dual-Task (Prediction + Gen.) UniTruss
* NRMSE_ cc: condition confirmation error.
UNIMATE (ours) Handles all 3 tasks in a unified framework

O Results and Remarks:

« UniMate compared with second best model: 80.2% less error in generating material based on property, 5.1% less error in predicting
material properties, 50.2% less error in confirming manufacturing condition.

» The strong cross-modality alignment of UniMate enables superior performance across diverse tasks.

Table 2. Effectiveness Comparison.

ToPO. GEN. TASK PROP. PRED. TASK  COND. CONFIRM. TASK

MODEL Foua Feond NRMSE NRMSEc:

(x107%, ) (x1072, |) (x1072, ]) (x1072, ])
CDVAE (XIE ET AL., 2022) 19.23 32.71 N/A N/A
EQUIFORMER (L1AO & SMIDT, 2022) N/A N/A 5.31 38.05
VISNET (WANG ET AL., 2024) N/A N/A 3.12 10.43
SYMAT (LUO ET AL., 2024B) 16.94 33.37 N/A N/A
UNITRUSS (ZHENG ET AL., 2023A) 19.43 33.77 2.71 8.89
MACE+VE (GREGA ET AL., 2024) N/A N/A 2.57 9.09
UNIMATE (OURS) 2.74 7.81 2.44 4.43




Results and Analysis — Case Study

1 Application Task: Designing for light material with high stiffness.
] Setup: Fixed low density (e.g., 0.3), varied target stiffness.

1 Findings: Model generates topology transitions from intermediate to known; Able to interpolate
and propose structures unseen by the model.

Structural Transition

Octet Intermediate structures

Low Stiffness Medium Stiffness High Stiffness

—

Property Transition




Conclusion

d Summary of Work:
* We proposed UniMate, a unified model that integrates multiple data modalities to
support diverse tasks in mechanical metamaterial design.

1 Key Contributions:

* Formulated metamaterial design as a multi-modal completion task.

* Proposed a unified model with modality alignment and synergetic diffusion.
* Built a benchmark dataset with standardized metrics.

d Impact of Work:
* Enables flexible and condition-aware inverse design.
e Advances data-driven methods for complex material systems.

Project Link: https://github.com/wzhan24/UniMate W
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Wangzhi Zhan
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