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Introduction

« Safe PDE control task: given a control objective J, find the optimal control signal w* while
satisfying PDE constraints and constraining the safety score s to stay below the bound s :

w* = argmin,, J(u,w) s.t. Clu,w) =0 s(u) < sy

« E.g.How to control external forces on a fluid, to maximize smoke reaching a target exit, under
the constraints of fluid dynamics and a hazardous region.

Nuclear Fusion control Fluid Dynamics
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 Challenge 1: Suboptimal & Unsafe offline data
* Models learn from offline data that are filled with suboptimal and unsafe examples

 Challenge 2: Balancing Performance and Safety

 There's an inherent conflict between optimizing control performance and
satisfying safety constraints.

 Our Insight: Quantify and Adapt to Uncertainty

« We use conformal prediction to quantify this uncertainty. Instead of a single point
estimate, we compute a guaranteed safety interval. We then adapt our diffusion

model to ensure this entire interval-not just the prediction—stays within the safe
boundary.



Preliminary - Conformal Prediction

 Core idea: Use a calibration set to estimate future prediction errors, providing a
statistically valid prediction interval with a guaranteed coverage probability of at

least1 — «

 Calibration Set: Split out from training data, used to estimate the model's prediction
errors

« Conformal Scores: For a model prediction u, (X;), a set of error scores S; = |ug(X;) —

Y;| calculated on the calibration set.
* Significance Level (a): The allowed error rate
* Quantile (q;_,): The (1 — a)-th quantile of the conformal scores.

* Prediction Interval: For a new point X,,.,,, the true value Y,,.,, is guaranteed to be in
Lo Knew) — Q1—a o Knew) + q1—¢] With at least 1 — a probability.
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Method - Uncertainty Quantification of Diffusion Models

* Problem: The standard assumption for conformal prediction doesn't hold. There is a

distribution shift between the calibration data and the control sequences generated
by the diffusion model during inference.

* Shifted Score Set:
1. Standard Score Set: S = {[s(us(w;))—s(u;)| : (0, ;) € Dear}U{o0}
2. Re-weightthese scores: S = {wyom(u;, W;)As; : As; € S}
The weight w(u;, w;) estimates the likelihood ratio between the model's target
distribution and the calibration distribution

* Conformal Interval:
Cly(1 — a,D.y) := [s(ug(w)) — Q(1 — 5‘), s(ug(w)) + Q(1 — a;g)]
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Method - Post-training with Reweighted Loss

* Goal: Steer the pre-trained diffusion model's distribution towards a target distribution

that is both safer and more optimal.

* Uncertainty-Aware Weighting Function:

W(u,w) = ma,x[f(u) + Q(1 — «; 5’2 — 80,0] + 7T (u, w)

Upper Bound of CI

 Penalize unsafe actions and suboptimal objectives. Critically, it penalizes trajectories
where the upper bound of the conformal interval exceeds the safety threshold.

* Reweighted Diffusion Loss : Modify the standard diffusion training loss by

reweighting each sample from the training data

Epost—tmz’n - E[e_W(u’w)He — 69(' . )H%]
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Method - Inference-time Fine-tuning

* Goal: For a specific control task at inference time, we further optimize the model to

improve safety and performance through an iterative process.

* Two-Step lterative Loop:

1. Guided Sampling: Generate control sequences using the diffusion model, but
guide the sampling process at each denoising step.

G(u,w) =W(u,w)

2. Fine-tuning: Use the control sequences generated to perform a few steps of
gradient descent on the model's parameters 6:

['fz'ne—tune — Z W(uﬂa w@)

(u9 ,Wg ) 6-l).scmr.‘bpl'ed
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Results - New Datasets & Key Findings

« We design three safe control tasks and evaluate our method in them:
* 1D Burgers’ equation
« 2D incompressible fluid

 Tokamak fusion reactor

- SafeDiffCon demonstrates superior Safety and control performance:

 Safety: Across all experiments, SafeDiffCon was the only method that satisfied all safety
constraints (0% unsafe trajectories), whereas all classical and deep learning baselines failed
on at least one task.

« Control Performance: While guaranteeing safety, SafeDiffCon also achieved the best control
performance among all methods.
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Ju ou 0%u _ Original trajectory
{ 3= U5, + v 922 +w(t,x),in[0,T]xQ
u(t,x) =0, on [0, T] X 9Q ' ' :
\ u(0,x) = ugy(x), in {0} x Q
. N\ \/\ Controlled by SafeDiffCon
Control objective: (u;(x) is target state)
2 ' X X X
Jactual = flu(T' x) — ud(x)l dx
Safety score. Methods \7 wL Rsamplc ~lr ,R'time J, 7zfpoint ~lr
s(u) = sup  {u(t, X)z} BC 0.0001 38% 13% 1.2%
(£0e[0.T]xQ BC-Safe 0.0002 | 14% 3% 0.2%
R . unsafe trajectories / total trajectories PID 0.0968 0% 0% 0.0%
sample: J J SL-Lag 00115 | 0% 0%  0.0%
Rtime: unsafe timesteps among all timesteps MPC-Lag 0.0092 0% 0% 0.0%
. . , , . CDT 0.0012 16% 3% 0.2%
Ryoint: unsafe spatial lattice pointsin all points TREBI 0.0074 0% 0% 0.0%
SafeDiff Con | 0.0016 0% 0% 0.0%

10



Sci
[] i;»“o‘- i —
| -
IC M L g "‘ Xk
ikt
International Conference 6(,- K '405\
n & pis®

n Machine Learning

Control objective:

Methods J | SVM|] 7R\

the negative ratio of smoke passing through the target
bucket located at th tor t BC -0.7104 | 0.7156 88%
Heretiocated atihe center op. BC-Safe 02520 | 0.0330 8%
Safety score: CDT -0.7025 | 0.2519 30%
_ _ _ TREBI -0.7019 | 0.0808 18%

the ratio of smoke entering the unsafe red region.
SVM = SafeDiffCon | -0.3548 | 0.0000 0%
= max|[s — Sg, 0]

R: unsafe trajectories

Unsafe region
(B =
Exit Non-controllable Area

Target exit Controllable Area

t=7 t=14 t=21 t=28
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(a) Locations of exits and obstacles (b) Locations of controllable area
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Control Results - Tokamak Fusion Reactor

Control objective:

J = (18,(t,z) — B2(@)2 + |Li(t, z) — I () [2)davdlt

Qx[0,T]

Methods J 1 | Reample 4 Ritime 4
BC 0.0610 42% 1.34%
BC-Safe 0.0811 4% 0.03%
SL-Lag 0.8812 0% 0.00%
MPC-Lag 0.8659 0% 0.00%
CDT 0.0071 8% 0.54%
TREBI 0.0261 0% 0.00%
SafeDiffCon | 0.0121 0% 0.00%

Safety score:

{Q'95 (tv .CL')}

S = — inf
(t,z)€[0,T] xQ2

Al-designed plasma shape

SafeDiffCon, MSE: 0.0031
Safety Factor 95

qas
—— safety bound
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Thank youl!

If you have any questions, please feel free to contact
us at:

hupeiyan18@mails.ucas.ac.cn

wutailin@westlake.edu.cn
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Group
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