

From Uncertain to Safe: Conformal Adaptation of Diffusion Models for Safe PDE Control

Peiyan Hu^{2#*}, Xiaowei Qian^{1#*}, Wenhao Deng¹, Rui Wang^{3#}, Haodong Feng¹, Ruiqi Feng¹, Tao Zhang¹, Long Wei¹,

Yue Wang⁴, Zhi-Ming Ma², Tailin Wu^{1†}

¹ Department of Artificial Intelligence, School of Engineering, Westlake University,

² Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

³ Fudan University, ⁴ Zhongguancun Academy

(* equal contributions; # intern at Westlake University, † corresponding author)

Corresponding to: {hupeiyan,wutailin}@westlake.edu.cn

Introduction

<u>Safe PDE control task</u>: given a control objective \mathcal{J} , find the optimal control signal w* while satisfying PDE constraints and constraining the safety score s to stay below the bound s_0 :

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \mathcal{J}(\mathbf{u}, \mathbf{w})$$
 s.t. $\mathcal{C}(\mathbf{u}, \mathbf{w}) = \mathbf{0}$ $\mathbf{s}(\mathbf{u}) \leq \mathbf{s}_0$

E.g. How to control external forces on a fluid, to maximize smoke reaching a target exit, under the constraints of fluid dynamics and a hazardous region.

Nuclear Fusion control

Fluid Dynamics

Motivation

- Challenge 1: Suboptimal & Unsafe offline data
 - Models learn from offline data that are filled with suboptimal and unsafe examples
- Challenge 2: Balancing Performance and Safety
 - There's an inherent conflict between optimizing control performance and satisfying safety constraints.
- Our Insight: Quantify and Adapt to Uncertainty
 - We use conformal prediction to quantify this uncertainty. Instead of a single point estimate, we compute a guaranteed safety interval. We then adapt our diffusion model to ensure this entire interval—not just the prediction—stays within the safe boundary.

Preliminary - Conformal Prediction

- Core idea: Use a calibration set to estimate future prediction errors, providing a statistically valid prediction interval with a guaranteed coverage probability of at least $1-\alpha$
- Calibration Set: Split out from training data, used to estimate the model's prediction errors
- Conformal Scores: For a model prediction $\mu_{\theta}(X_i)$, a set of <u>error scores</u> $S_i = |\mu_{\theta}(X_i) Y_i|$ calculated on the calibration set.
- Significance Level (α): The allowed error rate
- Quantile $(q_{1-\alpha})$: The $(1-\alpha)$ -th quantile of the conformal scores.
- Prediction Interval: For a new point X_{new} , the true value Y_{new} is guaranteed to be in $[\mu_{\theta}(X_{new}) q_{1-\alpha}, \mu_{\theta}(X_{new}) + q_{1-\alpha}]$ with at least 1α probability.

Method

Method - Uncertainty Quantification of Diffusion Models

• **Problem:** The standard assumption for conformal prediction doesn't hold. There is a <u>distribution shift</u> between the calibration data and the control sequences generated by the diffusion model during inference.

Shifted Score Set:

- 1. Standard Score Set: $S := \{|s(\mathbf{u}_{\theta}(\mathbf{w}_i)) s(\mathbf{u}_i)| : (\mathbf{u}_i, \mathbf{w}_i) \in D_{\text{cal}}\} \cup \{\infty\}$
- 2. Re-weight these scores: $\tilde{\mathcal{S}}\coloneqq\{\omega_{\mathrm{norm}}(\mathbf{u}_i,\mathbf{w}_i)\Delta s_i:\Delta s_i\in\mathcal{S}\}$

The weight $\omega(u_i, w_i)$ estimates the likelihood ratio between the model's target distribution and the calibration distribution

Conformal Interval:

$$CI_{ heta}(1-lpha,D_{cal}):=[s(u_{ heta}(w))-Q(1-lpha; ilde{S}),s(u_{ heta}(w))+Q(1-lpha; ilde{\mathcal{S}})]$$

Method - Post-training with Reweighted Loss

- Goal: Steer the pre-trained diffusion model's distribution towards a target distribution that is both safer and more optimal.
- Uncertainty-Aware Weighting Function:

$$\mathcal{W}(u,w) = \max[\underbrace{s(u) + Q(1-lpha; ilde{S})}_{ ext{Upper Bound of CI}} - s_0, 0] + \gamma \mathcal{J}(u,w)$$

- Penalize unsafe actions and suboptimal objectives. Critically, it penalizes trajectories where the <u>upper bound of the conformal interval</u> exceeds the safety threshold.
- Reweighted Diffusion Loss: Modify the standard diffusion training loss by reweighting each sample from the training data

$$\mathcal{L}_{post-train} := \mathbb{E}[e^{-\mathcal{W}(u,w)}||\epsilon - \epsilon_{ heta}(\dots)||_2^2]$$

Method - Inference-time Fine-tuning

- Goal: For a specific control task at inference time, we further optimize the model to improve safety and performance through an iterative process.
- Two-Step Iterative Loop:
 - 1. Guided Sampling: Generate control sequences using the diffusion model, but guide the sampling process at each denoising step.

$$\mathcal{G}(u,w)=\mathcal{W}(u,w)$$

2. Fine-tuning: Use the control sequences generated to perform a few steps of gradient descent on the model's parameters θ :

$$\mathcal{L}_{fine-tune} = \sum_{(u_{ heta}, w_{ heta}) \in D_{sampled}} \mathcal{W}(u_{ heta}, w_{ heta})$$

Results - New Datasets & Key Findings

- We design three safe control tasks and evaluate our method in them:
 - 1D Burgers' equation
 - 2D incompressible fluid
 - Tokamak fusion reactor
- SafeDiffCon demonstrates superior Safety and control performance:
 - Safety: Across all experiments, SafeDiffCon was the only method that satisfied all safety constraints (0% unsafe trajectories), whereas all classical and deep learning baselines failed on at least one task.
 - Control Performance: While guaranteeing safety, SafeDiffCon also achieved the best control
 performance among all methods.

Control Results - 1D Burgers' equation

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} = -\mathbf{u} \cdot \frac{\partial \mathbf{u}}{\partial x} + \nu \frac{\partial^2 \mathbf{u}}{\partial x^2} + \mathbf{w}(t, x), & \text{in } [0, T] \times \Omega \\ \mathbf{u}(t, x) = \mathbf{0}, & \text{on } [0, T] \times \partial \Omega \\ \mathbf{u}(0, x) = \mathbf{u_0}(x), & \text{in } \{0\} \times \Omega \end{cases}$$

Control objective: ($u_d(x)$ is target state)

$$J_{actual} = \int |u(T, x) - u_d(x)|^2 dx$$

Safety score:

$$s(u) = \sup_{(t,x)\in[0,T]\times\Omega} \{u(t,x)^2\}$$

 R_{sample} : unsafe trajectories / total trajectories

 R_{time} : unsafe timesteps among all timesteps

 R_{point} : unsafe spatial lattice points in all points

Original trajectory

Controlled by SafeDiffCon

Methods	$\mid \mathcal{J} \downarrow$	$\mid \mathcal{R}_{sample} \downarrow$	$\mathcal{R}_{time}\downarrow$	$\mathcal{R}_{point}\downarrow$
BC	0.0001	38%	13%	1.2%
BC-Safe	0.0002	14%	3%	0.2%
PID	0.0968	0%	0%	0.0%
SL-Lag	0.0115	0%	0%	0.0%
MPC-Lag	0.0092	0%	0%	0.0%
CDT	0.0012	16%	3%	0.2%
TREBI	0.0074	0%	0%	0.0%
SafeDiffCon	0.0016	0%	0%	0.0%

Control Results - 2D incompressible fluid

Control objective:

the negative ratio of smoke passing through the target bucket located at the center top.

Safety score:

the ratio of smoke entering the unsafe red region.

$$SVM = \max[s - s_0, 0]$$

R: unsafe trajectories

Methods	$ \hspace{.05cm} \mathcal{J}\downarrow\hspace{.05cm}$	$ SVM\downarrow$	$\overline{\mathcal{R}\downarrow}$
BC	-0.7104	0.7156	88%
BC-Safe	-0.2520	0.0330	8%
CDT	-0.7025	0.2519	30%
TREBI	-0.7019	0.0808	18%
SafeDiffCon	-0.3548	0.0000	0%

(a) Locations of exits and obstacles

(b) Locations of controllable area

Control Results - Tokamak Fusion Reactor

Control objective:

$$\mathcal{J}\coloneqq\int_{\Omega imes[0,T]}(|eta_p(t,x)-eta_p^*(x)|^2\,+|l_i(t,x)-l_i^*(x)|^2)\mathrm{d}x\mathrm{d}t$$

Safety score:

$$s := -\inf_{(t,x)\in[0,T]\times\Omega} \{q_{95}(t,x)\}$$

Methods	$\mid \mathcal{J} \downarrow$	$\mid \mathcal{R}_{ ext{sample}} \downarrow$	$\mathcal{R}_{time}\downarrow$
BC	0.0610	42%	1.34%
BC-Safe	0.0811	4%	0.03%
SL-Lag	0.8812	0%	0.00%
MPC-Lag	0.8659	0%	0.00%
CDT	0.0071	8%	0.54%
TREBI	0.0261	0%	0.00%
SafeDiffCon	0.0121	0%	0.00%

Thank you!

If you have any questions, please feel free to contact us at:

hupeiyan18@mails.ucas.ac.cn wutailin@westlake.edu.cn

Group Website:

