Consensus is all you get: the role of attention in transformers

Á. Rodríguez Abella, J.P. Silvestre and P. Tabuada

42nd International Conference on Machine Learning

July 13-19, 2025

- ▶ Prompt encoded: $\mathbf{y} = (y_1, \dots, y_\ell) \in (\mathbb{R}^{n+1})^\ell$.
- ▶ Propagation through the layers of the network.
- ► **TB**: Transformer block.
- Next token generation based on current tokens and appended at the end of the original sequence or string.
- Process finishes when an 'end of sentence' token is generated.

TRANSFORMER BLOCK

- ► MHSA: multi-head self-attention.
- ► N: layer normalization.
- MLP: multi-layer perceptron.

Transformer dynamics

$$y_i(k+1) = \textcolor{red}{N}\big(\textcolor{red}{N}(f_{\mathrm{sa},i}(\mathbf{y}(k))) + f_{\mathrm{ff}}(\textcolor{red}{N}(f_{\mathrm{sa},i}(\mathbf{y}(k))))\big)$$

Self-attention dynamics

$$y_i(k+1) = N(f_{sa,i}(\mathbf{y}(k))).$$

- Self-attention: $f_{\text{sa},i}(\mathbf{y}) = y_i + \tau \sum_{n=1}^{n} \sum_{j=1}^{\kappa} \alpha_{ij}^{n}(\mathbf{y}) U_n y_j$.
- ▶ Value matrix: $U_n \in \mathbb{R}^{(n+1)\times(n+1)}$.

Self-attention matrix,
$$A_{\eta}(\mathbf{y}) = \left(\alpha_{ij}^{\eta}(\mathbf{y})\right)_{1 \leq i,j \leq \ell} \in \mathbb{R}^{\ell \times \ell}$$

$$\alpha_{ij}^{\eta}(\mathbf{y}) = \frac{1}{Z_i^{\eta}(\mathbf{y})} \exp(\mathbf{y}_i^{\top} P_{\eta} \mathbf{y}_j), \quad Z_i^{\eta}(\mathbf{y}) = \sqrt{n+1} \sum_{i=1}^{\ell} \exp(\mathbf{y}_i^{\top} P_{\eta} \mathbf{y}_j).$$

▶ Key and query matrices: $K_{\eta}, Q_{\eta} \in \mathbb{R}^{w \times (n+1)} \rightsquigarrow P_{\eta} = K_{\eta}^{\top} Q_{\eta} \in \mathbb{R}^{(n+1) \times (n+1)}$.

- Normalization: $N(y) = \frac{y}{|y|w}$, where:
 - ▶ $W \in \mathbb{R}^{(n+1)\times(n+1)}$ symmetric, positive definite.
- ▶ When $0 < |\tau| \ll 1$, the discrete dynamics can be approximated by:

Continuous dynamics

$$\dot{\mathbf{y}}_i = T_{\mathbf{y}_i} \mathbf{N} \cdot \left(\sum_{\eta=1}^h \sum_{j=1}^\ell \alpha_{ij}^{\eta}(t, \mathbf{y}) U_{\eta}(t) \mathbf{y}_j \right), \qquad t \geq 0, \ 1 \leq i \leq \ell.$$

► The solution of this equation models the evolution of the tokens along the consecutive attention layers.

	Full attention	Causal attention (auto-regressive)	
# of heads	<i>h</i> ≥ 1	<i>h</i> ≥ 1	h = 1
$P(t) = Q(t)^{ op} K(t)$	Time varying, uniformly continuous, bounded	Time varying, bounded	Time varying, bounded
U(t)	Identity	Identity	Time invariant, symmetric
Result	Convergence to consensus	Asympt. stability of consensus	Asympt. stability of consensus
Domain of attraction	Some hemisphere	Conull (complement of zero measure)	Fixed hemisphere

- ► Closest results in the literature are based on stronger assumptions.
- ► Time-varying case has no analogue in the literature.

- ► Experiments performed on GPT-2 XL and GPT-Neo 2.7B.
- ▶ Depth increased by looping the transformers, i.e., the output after each pass is fed as an input for a new pass of the model.
- ▶ 100 random prompts with 200 tokens each.

Experiments

- Looped with trained weights.
- Looped with random weights.
- ► Random weights reinitialized after each pass of the model.

► Misalignment measured by
$$E(\mathbf{y}) = 1 - \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\mathbf{y}_1^{\top} \mathbf{y}_i}{|\mathbf{y}_1| |\mathbf{y}_i|}$$
.

Pure self-attention.

Full model.

Looped with fixed random weights.

Top: full model.

Bottom: pure self-attention.

Random weights after each pass.

Top: full model.

Bottom: pure self-attention.

Conclusions

- ► Real Transformer dynamics approximated by continuous model (ResNet).
- Asymptotic analysis of the self-attention mechanism.
- ► Theoretical results show convergence to consensus: model collapse.
- Experiments confirm collapse, even for the full Transformer (self-attention + feed-forward layer).