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▶ Prompt encoded: y = (y1, . . . , yℓ) ∈ (Rn+1)ℓ.
▶ Propagation through the layers of the network.
▶ TB: Transformer block.
▶ Next token generation based on current tokens and

appended at the end of the original sequence or
string.

▶ Process finishes when an ’end of sentence’ token is
generated.
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TRANSFORMER BLOCK
▶ MHSA: multi-head self-attention.
▶ N: layer normalization.
▶ MLP: multi-layer perceptron.

Transformer dynamics

yi(k + 1) = N
(
N(fsa,i(y(k)))+fff(N(fsa,i(y(k))))

)
Self-attention dynamics

yi(k + 1) = N
(
fsa,i(y(k))

)
.
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▶ Self-attention: fsa,i(y) = yi + τ

h∑
η=1

k∑
j=1

αη
ij (y)Uη yj .

▶ Value matrix: Uη ∈ R(n+1)×(n+1).

Self-attention matrix, Aη(y) =
(
αη

ij (y)
)

1≤i,j≤ℓ
∈ Rℓ×ℓ

αη
ij (y) =

1
Z η

i (y)
exp(y⊤i Pη yj), Z η

i (y) =
√

n + 1
ℓ∑

j=1

exp(y⊤i Pη yj).

▶ Key and query matrices: Kη,Qη ∈ Rw×(n+1) ⇝ Pη = K⊤
η Qη ∈ R(n+1)×(n+1).
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▶ Normalization: N(y) =
y

|y|W
, where:

▶ W ∈ R(n+1)×(n+1) symmetric, positive definite.
▶ |y|W = y⊤ W y ⇝ N(y) ∈ En

W = {y ∈ Rn+1 | |y|W = 1}.
▶ When 0 < |τ | ≪ 1, the discrete dynamics can be approximated by:

Continuous dynamics

ẏi = Tyi N ·

 h∑
η=1

ℓ∑
j=1

αη
ij (t ,y)Uη(t) yj

 , t ≥ 0, 1 ≤ i ≤ ℓ.

▶ The solution of this equation models the evolution of the tokens along the
consecutive attention layers.
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Full attention Causal attention (auto-regressive)

# of heads h ≥ 1 h ≥ 1 h = 1

P(t) = Q(t)⊤K (t)
Time varying,

uniformly continuous,
bounded

Time varying,
bounded

Time varying,
bounded

U(t) Identity Identity Time invariant,
symmetric

Result Convergence to
consensus

Asympt. stability
of consensus

Asympt. stability
of consensus

Domain of
attraction Some hemisphere Conull (complement

of zero measure) Fixed hemisphere

▶ Closest results in the literature are based on stronger assumptions.
▶ Time-varying case has no analogue in the literature.
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▶ Experiments performed on GPT-2 XL and GPT-Neo 2.7B.
▶ Depth increased by looping the transformers, i.e., the output after each pass

is fed as an input for a new pass of the model.
▶ 100 random prompts with 200 tokens each.

Experiments

▶ Looped with trained weights.
▶ Looped with random weights.
▶ Random weights reinitialized after each pass of the model.

▶ Misalignment measured by E(y) = 1 − 1
ℓ

ℓ∑
i=1

y⊤1 yi

|y1| |yi |
.
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Looped with fixed random weights.
Top: full model.
Bottom: pure self-attention.
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Random weights after each pass.
Top: full model.
Bottom: pure self-attention.
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Conclusions

▶ Real Transformer dynamics approximated by continuous model (ResNet).
▶ Asymptotic analysis of the self-attention mechanism.
▶ Theoretical results show convergence to consensus: model collapse.
▶ Experiments confirm collapse, even for the full Transformer (self-attention +

feed-forward layer).
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