

Session 4, Topic: Zero-order and Black-box Optimization

EARL-BO: Reinforcement Learning for Multi-Step Lookahead, High-Dimensional Bayesian Optimization

ICML 2025

Authors: Mujin Cheon, Dong Yeun Koh, Jay H. Lee, and Calvin Tsay

Motivation

Black-box optimization

$$\mathbf{x}_{\star} = \underset{\mathbf{x} \in \mathcal{X}}{arg\,max\,f(\mathbf{x})}$$

- Many decision-making problems in engineering domains can be cast as black-box optimization problems
- \Leftrightarrow Where f(x) is a black-box, i.e.
 - ✓ We may only be able to observe the function value (no gradients)
 - ✓ Typically, sampling is expensive

Background

Bayesian optimization

- An interactive decision-making strategy for global optimization of black box functions
- Balancing between exploration and exploitation by utilizing uncertainty estimates
 - Surrogate model is constructed from the data
 - Based on the model, <u>acquisition function</u> suggests the next experiment input

Surrogate model - Gaussian process (GP)

- Most common surrogate model for Bayesian optimization
- GP provides not only mean, but also confidence of estimates

Figure 1. Example of Gaussian process model

Acquisition function

Figure 2. Illustration of acquisition function (EI)

- Acquisition function guides where to sample at next trial, t+1
- Choice of acquisition function determines a way to balance between exploration and exploitation
- ❖ As an example, Expected Improvement (EI) is the most popular acquisition function

$$u(x) = max(f(x) - f^{\text{best}}, 0)$$
$$a_{\text{EI}}(x) = \mathbb{E}[u(x) \mid x, \mathcal{D}_t]$$

EI Step 1

Problem with conventional Bayesian optimization

Non-myopic Step 1

Figure 3. Illustration of acquisition function values

Expected Improvement only cares about 1- step lookahead decision making

$$u(x) = \max(f^{\text{best}} - f(x), 0)$$
$$a_{\text{EI}}(x) = \mathbb{E}[u(x) \mid x, \mathcal{D}_t]$$

- No consideration of future decisions
- Struggles to escape local minima

Background

Lookahead Bayesian optimization as a dynamic program

Figure 4. Illustration of Dynamic programming

- Lookahead BO can be expressed as a dynamic program (DP)
 - \blacktriangleright Decision at time t influence decisions in time t+1
- Solving DP is computationally extremely heavy
 - Rollout based BO has been introduced by Lam et al.

Background

Rollout based BO

Figure 5. Illustration of Rollout based BO

- To mitigate this computational expense, Rollout based BO has been suggested
 - ➤ For the 1st step, actions are optimized as normal
 - For the $2^{nd} \sim h^{th}$ decision, a **heuristic policy** (such as EI) is applied
 - ➤ No freedom of choice from the 2nd decision

Proposed approach: Reinforcement learning based BO

Reinforcement learning based BO

- Reinforcement learning (RL): a method to learn about the optimal decision on a certain state
- ❖ On a certain state, RL agent makes an action and receives reward from the environment
- RL can solve DP in a near optimal way

Figure 7. Principle of Reinforcement learning

Proposed method

Dyna architecture

- Learn a model from real experience
- Learn and plan value function from real and simulated experiences

Figure 8. Illustration of two different RL methods

Proposed state space – Encoder-based representation

❖Attention - and DeepSets-based Neural Network for RL-BO

Figure 9. Illustration for the encoder-based state representation

EARL-BO (Encoder Augmented RL for Bayesian Optimization)

Figure 10. An overview of the EARL-BO architecture

Benchmark functions

Case study

Four case studies with different benchmark functions with different dimension (2D, 5D, 8D, 30D)

- ❖ Three case studies with HPO-B benchmark data from OpenML (6D, 8D, 19D)
- Compared with Random, El, Rollout-BO, TuRBO, and SAASBO as a benchmark
- Performance index
 - \triangleright **Regret** = the difference between the optimal value and the best point in dataset at time t was recorded for the performance comparison (i.e. $y_{opt} - y_t^*$)
 - Averaged over 10 experiments

Case study: Benchmark functions

Figure 11. Optimization performance on 2D, 8D benchmark functions

Case study: Benchmark functions

Figure 12. Optimization performance on 30D benchmark functions

Case study: Hyperparameter optimization (HPO-B data)

Figure 13. Optimization performance on various Hyperparameter optimization problems

Conclusion

Conclusion

- EARL-BO shows superior optimization performance compared to existing rollout-based BO and high-dimensional BO methods in various dimensions
 - Implementation of encoder-based RL could be a way of making non-myopic and RL-based BO to be applicable for high-dimensional BO
 - ➤ However, it takes long time (~850s in PC) to make 1-step decision due to computational load

ICML paper number: 9113

Session 4, Topic: Zero-order and Black-box Optimization

Thank you for your attention

ICML 2025

Authors: Mujin Cheon, Dong Yeun Koh, Jay H. Lee, and Calvin Tsay

Appendix

Additional results

Learning rate of RL

Difference in learning rate between RL and Encoder

Standard RL and encoder modules are, respectively, (0.001, 0.01)

Ablation study

What happens if we use sequence as a state? (without the permutation invariant)

Figure 16. Optimization performance on various benchmark functions

Appendix

Additional results

Scale of standard deviation

Planning delusion

