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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311
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P
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where sgn(·) denotes the sign function returning 0 when the313
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loss function for reconstruction is then formulated as315
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LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399

5

CVPR
#1357

CVPR
#1357

CVPR 2025 Submission #1357. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308
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of ygt > 0 stands and a weight � is leveraged providing the320
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SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333
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bridization), and 10x Genomics Visium, to demonstrate the336
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uation. Notably, this evaluation protocol may place some 359
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set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397
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Abstract

Spatial Transcriptomics (ST) is a method that captures001

spatial gene expression profiles within histological sec-002

tions. The discrete spatial distribution and the super-high003

dimensional sequencing results make ST data challenging004

to be modeled effectively. In this paper, we manage to005

model ST in a continuous and compact manner by the pro-006

posed tool, SUICA, empowered by the great approxima-007

tion capability of Implicit Neural Representations (INRs).008

Concretely within the proposed SUICA, we incorporate a009

graph-augmented Autoencoder to effectively model the con-010

text information of the unstructured spots and provide in-011

formative embeddings that are structure-aware for spatial012

mapping. We also tackle the extremely skewed distribu-013

tion in a regression-by-classification fashion and enforce014

classification-based loss functions for the optimization of015

SUICA. By extensive experiments of a wide range of com-016

mon ST platforms, SUICA outperforms both conventional017

INR variants and SOTA methods for ST super-resolution re-018

garding numerical fidelity, statistical correlation, and bio-019

conservation. The fitted and densified prediction by SUICA020

also showcases improvements in downstream tasks that is021

able to benefit biological analysis. The code will be made022

available. [Qingtian: check Prof. Ding’s version]023

1. Introduction024

[Qingtian: technical flaws in ST, Stereo-seq suffers from025

drop-out rates]026

Spatial Transcriptomics (ST) technology has been un-027

der rapid development over the past few years. The plat-028

forms use various strategies to capture mRNA from tissue029

sections and perform sequencing to quantify the gene ex-030

pressions at spatially defined locations. Achieving higher031

resolution is essential for accurately modeling and analyz-032

ing cellular functions, while for now, ST data could still033

be rather expensive ($3,500/cm2 for the capture chip and034

$800/cm2 for the high-density sequencing [1]). Besides,035

Figure 1. Starting with the discretely sampled spots (a) of ST,
SUICA performs continuous modeling (b) by aid of the great ap-
proximation power of INRs. Such enhancement also enables a
comprehensive analysis as shown as the UMAP of (c).

ST data are usually captured as discrete, unordered points 036

in a tissue section, which poses unique challenges for data 037

organization and analysis. Different sequencing techniques 038

and platforms [18] exhibit significant heterogeneity in terms 039

of spatial distribution, sequencing depth, and drop-out rates. 040

Such heterogeneity makes a general backbone to model and 041

analyze data across different tissues by different platforms 042

less feasible. In this paper, we seek for a solution to the 043

modeling of ST data as a continuous and compact repre- 044

sentation, that manages to densify the spatial resolution and 045

benefit downstream analysis of ST. 046

Recently, Implicit Neural Representations (INRs) have 047

drawn great attention of researchers for their compact, con- 048

tinuous, and differentiable properties as a novel representa- 049

tion for general coordinate-based signals. Typically, INRs 050

map coordinates to corresponding values with a neural net- 051

work and have been widely employed to inverse graph- 052

ics [16], geometric modeling [22], and video compres- 053

sion [2]. It comes to us that the inherent smooth bias in 054

INRs could also bring intepolatability to the ST spots for a 055

more comprehensive analysis. However, scaling INRs up 056

to super-high dimensional data of ST is challenging due to 057

the curse of dimensionality, and can barely be achieved triv- 058

ially via widening or deepening the network. Besides, ST 059
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1
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X

M+
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2+

1

|M|
X
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|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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Abstract

Spatial Transcriptomics (ST) is a method that captures001

spatial gene expression profiles within histological sec-002

tions. The discrete spatial distribution and the super-high003

dimensional sequencing results make ST data challenging004

to be modeled effectively. In this paper, we manage to005

model ST in a continuous and compact manner by the pro-006

posed tool, SUICA, empowered by the great approxima-007

tion capability of Implicit Neural Representations (INRs).008

Concretely within the proposed SUICA, we incorporate a009

graph-augmented Autoencoder to effectively model the con-010

text information of the unstructured spots and provide in-011

formative embeddings that are structure-aware for spatial012

mapping. We also tackle the extremely skewed distribu-013

tion in a regression-by-classification fashion and enforce014

classification-based loss functions for the optimization of015

SUICA. By extensive experiments of a wide range of com-016

mon ST platforms, SUICA outperforms both conventional017

INR variants and SOTA methods for ST super-resolution re-018

garding numerical fidelity, statistical correlation, and bio-019

conservation. The fitted and densified prediction by SUICA020

also showcases improvements in downstream tasks that is021

able to benefit biological analysis. The code will be made022

available. [Qingtian: check Prof. Ding’s version]023

1. Introduction024

[Qingtian: technical flaws in ST, Stereo-seq suffers from025

drop-out rates]026

Spatial Transcriptomics (ST) technology has been un-027

der rapid development over the past few years. The plat-028

forms use various strategies to capture mRNA from tissue029

sections and perform sequencing to quantify the gene ex-030

pressions at spatially defined locations. Achieving higher031

resolution is essential for accurately modeling and analyz-032

ing cellular functions, while for now, ST data could still033

be rather expensive ($3,500/cm2 for the capture chip and034

$800/cm2 for the high-density sequencing [1]). Besides,035

Figure 1. Starting with the discretely sampled spots (a) of ST,
SUICA performs continuous modeling (b) by aid of the great ap-
proximation power of INRs. Such enhancement also enables a
comprehensive analysis as shown as the UMAP of (c).

ST data are usually captured as discrete, unordered points 036

in a tissue section, which poses unique challenges for data 037

organization and analysis. Different sequencing techniques 038

and platforms [18] exhibit significant heterogeneity in terms 039

of spatial distribution, sequencing depth, and drop-out rates. 040

Such heterogeneity makes a general backbone to model and 041

analyze data across different tissues by different platforms 042

less feasible. In this paper, we seek for a solution to the 043

modeling of ST data as a continuous and compact repre- 044

sentation, that manages to densify the spatial resolution and 045

benefit downstream analysis of ST. 046

Recently, Implicit Neural Representations (INRs) have 047

drawn great attention of researchers for their compact, con- 048

tinuous, and differentiable properties as a novel representa- 049

tion for general coordinate-based signals. Typically, INRs 050

map coordinates to corresponding values with a neural net- 051

work and have been widely employed to inverse graph- 052

ics [16], geometric modeling [22], and video compres- 053

sion [2]. It comes to us that the inherent smooth bias in 054

INRs could also bring intepolatability to the ST spots for a 055

more comprehensive analysis. However, scaling INRs up 056

to super-high dimensional data of ST is challenging due to 057

the curse of dimensionality, and can barely be achieved triv- 058

ially via widening or deepening the network. Besides, ST 059

1
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‣ Spatial Transcriptomics (ST) is a spatially resolved and 
high-dimensional measurement of gene expression.


‣ Whole Slice Imaging (WSI) vs Transcriptomics vs ST:

- WSI: Shows a static view of the structure, shape, and 

organization of cells. (Morphological features)

- Transcriptomics: Profiles cellular states in a sample 

based on gene expression but loses spatial information.

- ST: Provides a functional view of gene expression 

profiles across a tissue section with matched images.
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‣ ST data is high-dimensional, noisy and very sparse.

- The high sparsity and noisy nature of ST weakens the 
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- No existing ST platform is both affordable and capable 
of providing high resolution.
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399

5

CVPR
#1357

CVPR
#1357

CVPR 2025 Submission #1357. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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3.2.3 Embedding Mapping287

Now that we obtain a pre-trained GAE as well as the en-288

coded zgt, we start training the INR to learn the mapping289

of x ! z. Benefited from the compact and dense embed-290

dings by GAE, the work load of the subsequent INR, to fit291

the extremely skewed distribution, is greatly reduced. Em-292

pirically, we choose FFN [26] and SIREN [23] as two base-293

lines for SUICA, that are both tested by time and effective294

for general data. We also include some discussions regard-295

ing the choice between FFN and SIREN when applied to296

different ST slices.297

Similar to conventional INRs, we assume the error in the298

predicted ẑ follow a Gaussian distribution and apply MSE299

loss for optimization as300

Lembd =
1

|M|
X

M

(ẑ� zgt)
2, (1)301

where M represents the binary mask for all the elements302

in zgt. It is worth noting that although it is feasible to em-303

ploy the mapping output, ẑ, for downstream analysis, we304

consider it as an intermediate result and attempt to decode305

such latent code back to the raw space for a more holistic306

reconstruction.307

3.2.4 Decoding Head308

A straightforward solution to decoding ẑ to the raw rep-309

resentations is to directly employ the decoder of the pre-310

trained GAE. However, in the actual situation, this scheme311

will suffer from two main issues.312

INRs usually rely on norm-based loss functions for opti-313

mization, e.g., `2 norm. Such norm, which is also referred314

as Mean Squared Error (MSE), implicitly assumes that pre-315

diction errors are normally (Gaussian) distributed because316

it corresponds to the maximum likelihood estimator for a317

Gaussian distribution. However, for ST data,318

After we have pre-trained a GAE, we use its encoder to319

generate the embeddings for all of the spots, which we de-320

note as zgt.321

To tackle the extremely imbalanced distribution of zero322

and non-zero values, we leverage Dice Loss [25] in seman-323

tic segmentation that is known to be sensitive in skewed324

classes, and model the regression task as as a quasi-325

classification one. Intuitively, Dice Loss targets the In-326

tersection over Union (IoU) between the prediction map327

and the binary ground truth. Concretely, we use the non-328

negative half of tanh(·) to map the network output into a329

pseudo probability in the range of [0, 1), and compute the330

element-wise Hadamard product with the ground truth as331

the intersection. To prevent the division by 0, we have332

Ldice = 1�
2
P

(tanh(ŷ) � ygt) + ✏P
ŷ +

P
ygt + ✏

. (2)333

The loss function for reconstruction is then formulated as 334

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(3) 335

where M+ represents the binary mask where the condition 336

of ygt > 0 stands and a weight � is leveraged providing the 337

numerical instability of Dice Loss. 338

Two-stage methods will definitely accumulate the error 339

so we finetune the decoder while fitting INRs. 340

Regression-by-classification 341

L = Lembd + Lrecons (4) 342

4. Experiments 343

4.1. Datasets & Metrics 344

To thoroughly verify the general modeling capability of 345

SUICA across varying ST platforms against conventional 346

INRs. For a quantitative benchmarking, we involve a high- 347

quality Stereo-seq (SpaTial Enhanced REsolution Omics- 348

sequencing) dataset, namely MOSTA [1]. MOSTA consists 349

of a total of 53 sagittal sections from C57BL/6 mouse em- 350

bryos at 8 progressive stages using Stereo-seq, from which 351

we take 1 slice for each stage (from E9.5 to E16.5) for 352

benchmarking. 353

In addition to Stereo-seq, we also leverage ST data by 354

other common platforms, including Slide-seqV2, MER- 355

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy- 356

bridization), and 10x Genomics Visium, to demonstrate the 357

generalization of SUICA. 358

As for evaluation of the fitting performance of SUICA 359

with super-high dimensional data, we focus on 3 aspects, 360

namely numerical fidelity, statistical correlation, and bio- 361

conservation. For numerical fidelity, we apply MSE (Mean 362

Squared Error), MAE (Mean Absolute Error) and cosine 363

similarity to measure the significant, subtle and directional 364

errors between the predicted and ground-truth values re- 365

spectively. Note that we only measure numerical fidelity on 366

non-zero values considering the zero-inflated distribution of 367

ST. To measure the statistical correlation, we employ Pear- 368

son Correlation Coefficient and Spearman’s Rank Correla- 369

tion Coefficient (Spearman’s ⇢), with both of them rang- 370

ing from -1 to 1. Lastly, to evaluate how well the predic- 371

tion preserves cellular heterogeneity and spatial coherence 372

within the microenvironment, we use the Adjusted Rand 373

Index (ARI) as a metric for quantifying bio-conservation 374

leveraging the independent hand-crafted cell type annota- 375

tions. 376

4.2. Implemented Details 377

We randomly sample 80% of the spots within a ST slice for 378

training, with the left 20% kept for evaluation. Note that 379
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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non-zero values, we leverage Dice Loss [26] originated302

from semantic segmentation that is known to be sensitive303

in skewed classes, and model the regression task as as a304

quasi-classification one. Intuitively, Dice Loss targets the305

Intersection over Union (IoU) between the prediction map306

and the binary ground truth. Concretely, we use the non-307

negative half of tanh(·) to map the network output into a308

pseudo probability in the range of [0, 1), and compute the309

element-wise Hadamard product with the ground truth as310

the intersection. To prevent the division by 0, we have311

Ldice = 1�
2
P

(tanh(ŷ) � sgn(ygt)) + ✏P
tanh(ŷ) +

P
sgn(ygt) + ✏

, (3)312

where sgn(·) denotes the sign function returning 0 when the313

input is 0 and +1/-1 when the input is positive/negative. The314

loss function for reconstruction is then formulated as315

Lrecons =
1

|M+|
X

M+

(ŷ�ygt)
2+

1

|M|
X

M

|ŷ�ygt|+�Ldice,

(4)316317

LMAE = LMSE (5)318

where M+ represents the binary mask where the condition319

of ygt > 0 stands and a weight � is leveraged providing the320

numerical instability of Dice Loss.321

4. Experiments322

4.1. Datasets & Metrics323

To thoroughly verify the general modeling capability of324

SUICA across varying ST platforms against conventional325

INRs. For a quantitative benchmarking, we involve a326

nanoscale resolution Stereo-seq (SpaTial Enhanced REs-327

olution Omics-sequencing) dataset, namely MOSTA [1].328

MOSTA consists of a total of 53 sagittal sections from329

C57BL/6 mouse embryos at 8 progressive stages using330

Stereo-seq, from which we take 1 slice for each stage (from331

E9.5 to E16.5) for benchmarking.332

In addition to Stereo-seq, we also leverage ST data by333

other common platforms, including Slide-seqV2, MER-334

FISH (Multiplexed Error-Robust Fluorescence In Situ Hy-335

bridization), and 10x Genomics Visium, to demonstrate the336

generalization of SUICA.337

As for evaluation of the fitting performance of SUICA338

with super-high dimensional data, we focus on 3 aspects,339

namely numerical fidelity, statistical correlation, and bio-340

conservation. For numerical fidelity, we apply MSE, MAE341

(Mean Absolute Error) and cosine similarity to measure the342

significant, subtle and directional errors between the pre-343

dicted and ground-truth values respectively. Note that we344

only measure numerical fidelity on non-zero values con-345

sidering the zero-inflated distribution of ST. To measure346

the statistical correlation, we employ Pearson Correlation347

Coefficient and Spearman’s Rank Correlation Coefficient348

(Spearman’s ⇢), with both of them ranging from -1 to 1. 349

Lastly, to evaluate how well the prediction preserves cellu- 350

lar heterogeneity and spatial coherence within the microen- 351

vironment of the slice, we use the Adjusted Rand Index 352

(ARI) as a metric for quantifying bio-conservation lever- 353

aging the independent hand-crafted cell type annotations. 354

4.2. Implemented Details 355

We implemented SUICA using PyTorch Lightning, sam- 356

pling 80% of spots within a spatial transcriptomics (ST) 357

slice for training and retaining the remaining 20% for eval- 358

uation. Notably, this evaluation protocol may place some 359

validation spots outside the convex hull of the training 360

set, making interpolation challenging. To construct the 361

K-nearest neighbors (KNN) graph for the GCN, we set 362

the number of neighbors to 5, including the given cell. 363

The input for the GAE consists of a cell-by-gene expres- 364

sion matrix E 2 Rm⇥n, where m is the number of cells 365

and n is the number of genes, along with the KNN graph 366

A 2 Rn⇥n. During the pre-training phase for the GAE, we 367

used the Adam optimizer with a learning rate of 0.00001 368

for 200 epochs. After obtaining low-dimensional cell em- 369

beddings, we trained the INR with the Adam optimizer at 370

a learning rate of 0.0001 for 1000 epochs to fit the embed- 371

dings learned from the GAE. Subsequently, the INR was 372

frozen, and the initialized decoder was trained for an ad- 373

ditional 1000 epochs using the Adam optimizer with the 374

same learning rate of 0.0001. For SIREN and FFN, each 375

model was trained for 2000 epochs with a learning rate 376

of 0.0001. The deep learning-based reference-free spatial 377

imputation model, STAGE, was trained to convergence for 378

benchmarking purposes. All experiments were conducted 379

on 1 NVIDIA RTX 4090 GPU. 380

4.3. Benchmarking Results 381

Stereo-seq MOSTA dataset SUICA outperforms Near- 382

est Interpolation, vanilla INR methods (FFN and SIREN), 383

and STAGE in predicting the gene expression of unseen 384

spots in the MOSTA dataset [1]. Tab. 1 presents the de- 385

tailed quantitative benchmarking results. SUICA achieves 386

the lowest MAE and MSE and the highest cosine similar- 387

ity, exceeding the second-best method by 5.6%. SUICA 388

achieves higher correlation with ground truth, with Pearson 389

and Spearman coefficients of 0.792 and 0.447—exceeding 390

other methods by at least 4.5% and 4.7%. Due to its ca- 391

pacity to not only predict the gene expression of each spot 392

but also strengthen their biological signals, it obtains a bio- 393

conservation score 5.4% higher than the runner-up method 394

and even 3.9% above the ARI of the ground truth. 395

Fig. 4 illustrates SUICA’s ability to closely predict 396

ground-truth gene expression levels. RPLP0 gene highly in- 397

volves in the ribosomal function and consistently expresses 398

across various regions of mouse embryo. SUICA accurately 399
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Abstract

Spatial Transcriptomics (ST) is a method that captures001

spatial gene expression profiles within histological sec-002

tions. The discrete spatial distribution and the super-high003

dimensional sequencing results make ST data challenging004

to be modeled effectively. In this paper, we manage to005

model ST in a continuous and compact manner by the pro-006

posed tool, SUICA, empowered by the great approxima-007

tion capability of Implicit Neural Representations (INRs).008

Concretely within the proposed SUICA, we incorporate a009

graph-augmented Autoencoder to effectively model the con-010

text information of the unstructured spots and provide in-011

formative embeddings that are structure-aware for spatial012

mapping. We also tackle the extremely skewed distribu-013

tion in a regression-by-classification fashion and enforce014

classification-based loss functions for the optimization of015

SUICA. By extensive experiments of a wide range of com-016

mon ST platforms, SUICA outperforms both conventional017

INR variants and SOTA methods for ST super-resolution re-018

garding numerical fidelity, statistical correlation, and bio-019

conservation. The fitted and densified prediction by SUICA020

also showcases improvements in downstream tasks that is021

able to benefit biological analysis. The code will be made022

available. [Qingtian: check Prof. Ding’s version]023

1. Introduction024

[Qingtian: technical flaws in ST, Stereo-seq suffers from025

drop-out rates]026

Spatial Transcriptomics (ST) technology has been un-027

der rapid development over the past few years. The plat-028

forms use various strategies to capture mRNA from tissue029

sections and perform sequencing to quantify the gene ex-030

pressions at spatially defined locations. Achieving higher031

resolution is essential for accurately modeling and analyz-032

ing cellular functions, while for now, ST data could still033

be rather expensive ($3,500/cm2 for the capture chip and034

$800/cm2 for the high-density sequencing [1]). Besides,035

Figure 1. Starting with the discretely sampled spots (a) of ST,
SUICA performs continuous modeling (b) by aid of the great ap-
proximation power of INRs. Such enhancement also enables a
comprehensive analysis as shown as the UMAP of (c).

ST data are usually captured as discrete, unordered points 036

in a tissue section, which poses unique challenges for data 037

organization and analysis. Different sequencing techniques 038

and platforms [18] exhibit significant heterogeneity in terms 039

of spatial distribution, sequencing depth, and drop-out rates. 040

Such heterogeneity makes a general backbone to model and 041

analyze data across different tissues by different platforms 042

less feasible. In this paper, we seek for a solution to the 043

modeling of ST data as a continuous and compact repre- 044

sentation, that manages to densify the spatial resolution and 045

benefit downstream analysis of ST. 046

Recently, Implicit Neural Representations (INRs) have 047

drawn great attention of researchers for their compact, con- 048

tinuous, and differentiable properties as a novel representa- 049

tion for general coordinate-based signals. Typically, INRs 050

map coordinates to corresponding values with a neural net- 051

work and have been widely employed to inverse graph- 052

ics [16], geometric modeling [22], and video compres- 053

sion [2]. It comes to us that the inherent smooth bias in 054

INRs could also bring intepolatability to the ST spots for a 055

more comprehensive analysis. However, scaling INRs up 056

to super-high dimensional data of ST is challenging due to 057

the curse of dimensionality, and can barely be achieved triv- 058

ially via widening or deepening the network. Besides, ST 059
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Training-time only

Training and Inference

‣ Introduced SUICA to model ST data as a continuous, 
compact representation while preserving authenticity.


‣ Enabled Implicit Neural Representations (INRs) to process 
high-dimensional gene expression through a Graph 
Autoencoder and a classification  loss.


‣ Demonstrated SUICA’s strong imputation and denoising 
performance across various ST datasets, facilitating 
subsequent analyses.

‣ Quantitative comparisons of the gene imputation and 
denoising performance on mouse embryo E16.5 stereo-
seq data.
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Table 1. Quantitative benchmarking results of spatial imputation on MOSTA dataset (Chen et al., 2022a) and Slide-seqV2 Mouse
hippocampus dataset (Stickels et al., 2021). Bold figures are best scores and underlined figures are second-best. The respective reference
ARI scores are 0.312 (Stereo-seq MOSTA) and 0.182 (Mouse hippocampus Slide-seqV2). MAE/MSE: ⇥10�2 for Stereo-seq MOSTA.

Methods Stereo-seq MOSTA Mouse hippocampus Slide-seqV2
MAE# MSE# Cosine" Pearson" Spearman" ARI" MAE# MSE# Cosine" Pearson" Spearman" ARI"

FFN (Tancik et al., 2020) 6.51 1.20 0.706 0.718 0.400 0.143 0.378 0.215 0.499 0.442 0.274 0.0523
SIREN (Sitzmann et al., 2020) 7.21 1.31 0.661 0.678 0.247 0.289 0.383 0.216 0.494 0.452 0.248 0.110

STAGE (Li et al., 2024) 6.52 1.11 0.732 0.747 0.365 0.139 0.351 0.198 0.587 0.483 0.314 0.0361

SUICA (Ours) 5.66 0.85 0.797 0.792 0.447 0.343 0.265 0.125 0.752 0.473 0.308 0.111

bryo (Taylor & Pikó, 1992; Ozadam et al., 2023), SUICA
accurately predicts this uniform expression pattern, while
other methods overemphasize it in specific regions. SUICA
also accurately localizes AFP expression to the liver in the
mouse embryo (Kwon et al., 2006). Beyond accurately pre-
dicting gene expression in unobserved regions, SUICA is
also capable for imputation, enhancing the data to better
reflect true underlying biological signatures. For example,
despite its low expression level in the ground-truth, SUICA
successfully imputes SEPT3, a gene involved in neuronal
development, effectively restoring this signal in the brain
region. These results highlight SUICA’s capacity not only
to interpolate but also to enrich underlying biological sig-
natures, making it a useful tool for imputing and enhancing
spatial gene expression data with high fidelity preserved.

Mouse hippocampus Slide-seqV2 Slide-seqV2 allows to
sequence RNAs with a spatial resolution of 10 mm. The
Mouse hippocampus dataset (Stickels et al., 2021) is ap-
plied to evaluate the effectiveness of SUICA. As shown in
Table 1, SUICA achieves a substantially lower MAE and a
notably higher cosine similarity (marking a 16.5% improve-
ment) compared to other methods. Figure 4 illustrates the
ground-truth and predicted gene expression from the bench-
marking methods. Like other methods, SUICA accurately
predicts the expression of hippocampus marker genes, such
as HPCA (Hippocalcin) (Park et al., 2017) and MALAT1, a
gene abundantly expressed in the mouse brain (Park et al.,
2017). SUICA also demonstrates its ability to impute the
underlying biological signals, as evidenced by GABRB3,
which is consistently and strongly expressed in the mouse
hippocampus (Tanaka et al., 2012). These findings suggest
that SUICA provides reliable predictions that closely reflect
ground-truth data, capturing key gene expression patterns
in the Slide-seqV2 platforms.

4.5. Bio-conservation Analysis of Predicted Cell Type
Clusters

Biological variance conservation (Bio-conservation) refers
to the degree to which a computational method or model pre-
serves biologically meaningful features, such as cell types,
gene expression patterns, or cellular relationships, relative

Figure 5. Spatially visualized comparison on bio-conservations of
predicted spots on MOSTA mouse embryo E16.5, Slide-seqV2
mouse hippocampus, and Visium-Mouse brain.

to the ground-truth data (Luecken et al., 2022). A high bio-
conservation score indicates that the predicted data aligns
closely with biological reality, capturing key aspects of cell
identity, functional states, or tissue structure that are essen-
tial for accurate analysis.

In addition to quantitative bio-conservation metrics like ARI,
Figure 5 provides a visual assessment of bio-conservation
by coloring predicted spots according to dominant cell types
in individual clusters. For a fair comparison, we ensured
that the number of clusters matched the number of cell-type
labels in the dataset.

In E16.5, apart from the highest ARI among benchmarking
methods, SUICA also offers the closest spatial visualization
of cell types to the ground truth. Compared to other meth-
ods, SUICA captures fine-grained structures, such as the
choroid plexus in the brain, the gastrointestinal (GI) tract,
and the muscle cells surrounding the heart. FFN’s (Tancik
et al., 2020) predictions appear chaotic, with most cell-type
predictions misaligned with the ground-truth labels. While
SIREN (Sitzmann et al., 2020) correctly captures general
cell types patterns, it overlooks many details detected by
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Table 2. Quantitative benchmarking results of gene imputation and denoising on MOSTA dataset (Chen et al., 2022a). Bold figures are
best scores and underlined figures are second-best. MAE/MSE: ⇥10�2.

Methods Gene Imputation Denoising
MAE# MSE# Cosine" Pearson" Spearman" MAE# MSE# Cosine" Pearson" Spearman"

FFN (Tancik et al., 2020) 4.88 0.963 0.731 0.610 0.251 7.90 1.95 0.266 0.285 0.0523
SIREN (Sitzmann et al., 2020) 6.44 1.12 0.675 0.652 0.124 7.91 1.97 0.112 0.103 0.0166

STAGE (Li et al., 2024) 4.69 0.738 0.802 0.705 0.264 7.60 1.66 0.606 0.630 0.182

SUICA (Ours) 4.30 0.724 0.798 0.714 0.317 6.03 0.934 0.733 0.737 0.379

SUICA, such as the connective tissue around the cartilage
primordium in the mouse’s foot region and the cavity sur-
rounding the heart. STAGE (Li et al., 2024) identifies sev-
eral major cell types in the mouse embryo—such as liver and
brain—but misses smaller, yet important, cell populations.

In the Mouse hippocampus dataset, SUICA also demon-
strates its ability to capture both global and fine-grained
features, accurately identifying endothelial cells, Ependy-
mal cells, and inter-neurons. In contrast, FFN and STAGE
fail to detect smaller cell populations, while SIREN mis-
classifies inter-neurons. Similarly, on the Visium-Mouse
Brain dataset, SUICA uniquely identifies specific cell popu-
lations, such as Lateral Ventricle cells and Cortex 5, which
are absent from the predictions of other methods.

4.6. Gene Imputation & Denoising

Since INRs are known for its internal smoothness, SUICA is
able to perform channel-wise gene imputation and denoising
upon muted or contaminated gene expressions. In this way,
SUICA can be seen as a reference-free degradation-agnostic
restoration method for ST.

We benchmark the quantitative results in Table 2 upon
Stereo-seq MOSTA (Chen et al., 2022a). Note that the
pipeline is exactly identical except for the degradation pat-
tern. SUICA manages to handle the contaminated inputs in
almost all metrics. It also shows that GAE manages to make
it easier for INRs to model the smoothness in the super-high
dimensional space of gene expressions.

4.7. Ablation Study

We showcase two examples to illustrate how the pro-
posed modules in SUICA contribute to the final model
performance, namely the E16.5 embryo of Stereo-seq
MOSTA (spatially dense, 121,756 cells, 26,159 genes, with
FFN (Tancik et al., 2020) as backbone) and the Visium
Human Brain (spatially sparse, 4,910 cells, 36,592 genes,
with SIREN (Sitzmann et al., 2020) as backbone), under the
setting of spatial imputation.

As can be indicated from Table 3, the spatial density and
sequencing depth may influence SUICA’s effectiveness. For

Table 3. Ablation study on model design of SUICA. MSE: ⇥10�2

for Embryo E16.5 while ⇥10�3 for Human Brain.

Settings Embryo E16.5 Human Brain
MSE# Cosine" Pearson" MSE# Cosine" Pearson"

Vanilla INR 2.35 0.668 0.653 9.33 0.756 0.747
+AE 1.60 0.789 0.751 11.27 0.695 0.691
+Dice 1.48 0.806 0.747 7.05 0.826 0.800
+Graph 1.47 0.807 0.761 5.67 0.860 0.846

the Embryo E16.5 dataset, the primary performance im-
provement comes from the AE and the quasi-classification
loss. In contrast, in the Human Brain dataset, adding AE
causes a performance decrease, while the GCN has a more
significant impact on overall performance. Intuitively, we
attribute this difference to the varying spatial sparsity of
different ST techniques and GAE alleviates such issue by
incorporating spatial context.

5. Conclusion
In this paper, we seek to model the super-high dimensional
and sparse nature of ST data, enhancing both spatial reso-
lution and gene expression with the smooth prior inherent
in INRs. To this end, we present SUICA, a powerful INR
variant tailored to model ST in a continuous and compact
manner. Using a Graph Autoencoder, SUICA maps zero-
inflated raw data into a lower-dimensional embedding space,
preserving high-frequency details and making the complex
embedding mapping more feasible for INRs. The INR fitted
embeddings are then decoded to the raw expression with the
decoding head preventing the prediction error from accu-
mulating. To encourage the sparsity in the final predictions,
we leverage a quasi-classification loss term as a regular-
izer, preserving both the sparsity and numerical fidelity of
non-zero values. Extensive experiments on Stereo-seq, 10x
Genomics Visium, and Slide-seqV2 datasets demonstrate
SUICA’s effectiveness, yielding improvements in both in-
silico metrics and biologically meaningful analyses, with
enhanced spatial resolution and biological signatures. It
is firmly believed by us that SUICA will be an inspiring
attempt from both INRs and ST perspectives. We encourage
readers to check the appendix for complementary insights
and extended evaluations.
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Table 2. Quantitative benchmarking results of gene imputation and denoising on MOSTA dataset (Chen et al., 2022a). Bold figures are
best scores and underlined figures are second-best. MAE/MSE: ⇥10�2.

Methods Gene Imputation Denoising
MAE# MSE# Cosine" Pearson" Spearman" MAE# MSE# Cosine" Pearson" Spearman"

FFN (Tancik et al., 2020) 4.88 0.963 0.731 0.610 0.251 7.90 1.95 0.266 0.285 0.0523
SIREN (Sitzmann et al., 2020) 6.44 1.12 0.675 0.652 0.124 7.91 1.97 0.112 0.103 0.0166

STAGE (Li et al., 2024) 4.69 0.738 0.802 0.705 0.264 7.60 1.66 0.606 0.630 0.182

SUICA (Ours) 4.30 0.724 0.798 0.714 0.317 6.03 0.934 0.733 0.737 0.379

SUICA, such as the connective tissue around the cartilage
primordium in the mouse’s foot region and the cavity sur-
rounding the heart. STAGE (Li et al., 2024) identifies sev-
eral major cell types in the mouse embryo—such as liver and
brain—but misses smaller, yet important, cell populations.

In the Mouse hippocampus dataset, SUICA also demon-
strates its ability to capture both global and fine-grained
features, accurately identifying endothelial cells, Ependy-
mal cells, and inter-neurons. In contrast, FFN and STAGE
fail to detect smaller cell populations, while SIREN mis-
classifies inter-neurons. Similarly, on the Visium-Mouse
Brain dataset, SUICA uniquely identifies specific cell popu-
lations, such as Lateral Ventricle cells and Cortex 5, which
are absent from the predictions of other methods.

4.6. Gene Imputation & Denoising

Since INRs are known for its internal smoothness, SUICA is
able to perform channel-wise gene imputation and denoising
upon muted or contaminated gene expressions. In this way,
SUICA can be seen as a reference-free degradation-agnostic
restoration method for ST.

We benchmark the quantitative results in Table 2 upon
Stereo-seq MOSTA (Chen et al., 2022a). Note that the
pipeline is exactly identical except for the degradation pat-
tern. SUICA manages to handle the contaminated inputs in
almost all metrics. It also shows that GAE manages to make
it easier for INRs to model the smoothness in the super-high
dimensional space of gene expressions.

4.7. Ablation Study

We showcase two examples to illustrate how the pro-
posed modules in SUICA contribute to the final model
performance, namely the E16.5 embryo of Stereo-seq
MOSTA (spatially dense, 121,756 cells, 26,159 genes, with
FFN (Tancik et al., 2020) as backbone) and the Visium
Human Brain (spatially sparse, 4,910 cells, 36,592 genes,
with SIREN (Sitzmann et al., 2020) as backbone), under the
setting of spatial imputation.

As can be indicated from Table 3, the spatial density and
sequencing depth may influence SUICA’s effectiveness. For

Table 3. Ablation study on model design of SUICA. MSE: ⇥10�2

for Embryo E16.5 while ⇥10�3 for Human Brain.

Settings Embryo E16.5 Human Brain
MSE# Cosine" Pearson" MSE# Cosine" Pearson"

Vanilla INR 2.35 0.668 0.653 9.33 0.756 0.747
+AE 1.60 0.789 0.751 11.27 0.695 0.691
+Dice 1.48 0.806 0.747 7.05 0.826 0.800
+Graph 1.47 0.807 0.761 5.67 0.860 0.846

the Embryo E16.5 dataset, the primary performance im-
provement comes from the AE and the quasi-classification
loss. In contrast, in the Human Brain dataset, adding AE
causes a performance decrease, while the GCN has a more
significant impact on overall performance. Intuitively, we
attribute this difference to the varying spatial sparsity of
different ST techniques and GAE alleviates such issue by
incorporating spatial context.

5. Conclusion
In this paper, we seek to model the super-high dimensional
and sparse nature of ST data, enhancing both spatial reso-
lution and gene expression with the smooth prior inherent
in INRs. To this end, we present SUICA, a powerful INR
variant tailored to model ST in a continuous and compact
manner. Using a Graph Autoencoder, SUICA maps zero-
inflated raw data into a lower-dimensional embedding space,
preserving high-frequency details and making the complex
embedding mapping more feasible for INRs. The INR fitted
embeddings are then decoded to the raw expression with the
decoding head preventing the prediction error from accu-
mulating. To encourage the sparsity in the final predictions,
we leverage a quasi-classification loss term as a regular-
izer, preserving both the sparsity and numerical fidelity of
non-zero values. Extensive experiments on Stereo-seq, 10x
Genomics Visium, and Slide-seqV2 datasets demonstrate
SUICA’s effectiveness, yielding improvements in both in-
silico metrics and biologically meaningful analyses, with
enhanced spatial resolution and biological signatures. It
is firmly believed by us that SUICA will be an inspiring
attempt from both INRs and ST perspectives. We encourage
readers to check the appendix for complementary insights
and extended evaluations.
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satisfying model must maintain the inherent sparsity of ST
data, as it reflects the true gene expression. However, vanilla
INRs are observed to have the tendency to yield normally
distributed outputs that are smooth (Lee et al., 2018), rather
than the zero-inflated ones of ST, presenting a significant
challenge. It is also crucial to ensure the numerical fidelity
of non-zero values for accurate cell type identification. It is
worth noting that high sparsity complicates the evaluation of
reconstruction quality, as an entirely empty prediction may
still result in low loss, yet be entirely unacceptable. To this
end, the design of the representations and evaluation proto-
col must address both sparsity and numerical fidelity—an
aspect that has, to our knowledge, not been fully explored
in the context of INRs.

3.2. Method

3.2.1. OVERVIEW

The overall pipeline is illustrated in Figure 2. To construct a
compact and dense embedding domain for subsequent INRs,
we first incorporate a graph-based encoder and pre-train
Graph Autoencoder (GAE) using the given ST slice in a self-
regressing manner. With the pre-trained GAE, we obtain the
encoded latent representation for all spots, denoted as zgt.
We then initiate INR tuning to optimize the neural mapping
from ST coordinates to embeddings, targeting zgt. Once
the INR reaches a stable state, we attach a decoder that is
pre-trained in our GAE. Subsequently, we fix the INR and
train the decoder to fit the raw dataset readouts ygt.

Concretely, we perform 3 different tasks with SUICA,
namely spatial imputation, gene imputation, and denoising,
whose data flows are summarized as follows.

• Spatial Imputation: Say an ST slice {(x,y)}, whose
data spots are split into a training subset and a test
subset. With the training subset, we train SUICA
(GAE+INR), and infer the test subset for evaluation.

• Gene Imputation: We randomly mute a part of the gene
expressions of the data matrix, fit SUICA with all of
the data, and infer all of the x.

• Denoising: The data flow is basically the same as gene
imputation, but with injected noise as the degradation.

3.2.2. GRAPH-AUGMENTED AUTOENCODER

The sequenced readouts of ST are known for an extremely
skewed distribution, represented as high-dimensional,
sparse data. This sparsity exacerbates the curse of dimen-
sionality, rendering data points increasingly dissimilar and
challenging to organize efficiently.

To address this, we leverage an AE to transform the high-
dimensional raw space into a compact, dense, and infor-
mative embedding space. Given the irregular structure, the
context information, context or neighborhood information

GTV: 16.54
Variance: 0.73

(a) AE (b) GAE

GTV: 37.02
Variance: 2.79

Figure 3. Spectral analysis with the embeddings of AE and GAE.
GAE yields structure-aware and disentangled embeddings with
high-frequency details. GTV: Graph Total Variation.

is integrated through a graph structure, which we model
using a Graph Convolutional Network (GCN). Importantly,
the GCN is incorporated solely in the encoder, as the de-
coder—responsible for reconstructing interpolated embed-
dings back into the raw space—lacks the requisite graph
structure for such integration.

As illustrated in Figure 3, we conduct a graph-based spectral
analysis of embeddings generated by both the AE and the
GAE. Specifically, we construct a connectivity graph using
Euclidean distance between spots (k = 5) and calculate the
Graph Total Variation (GTV) for embeddings defined on
the built graph. Figure 3 is colored based on aggregated
edge-wise variations of each vertex, revealing that the GAE
produces shaper structural clues. Additionally, we compute
the channel-wise variance for both embeddings. Together
with the GTV results, these findings demonstrate that GAE
offers a more expressive and informative representation,
effectively capturing disentangled embeddings for ST.

To train GAE, we adopt the conventional Mean Square Error
(MSE) for supervision as

Lgae =
1

|My|
X

My

(ŷ � ygt)
2, (1)

where My represents the mask over all of the elements in y
to compute the element-wise average.

3.2.3. EMBEDDING MAPPING

With the pre-trained GAE and encoded representation zgt in
place, we proceed to train the INR to map x ! z. The com-
pact, dense embeddings provided by the GAE significantly
reduce the workload of the subsequent INR, which must fit
an otherwise highly skewed distribution.

For SUICA, we empirically select two baseline architec-
tures: FFN (Tancik et al., 2020) and SIREN (Sitzmann et al.,
2020), both of which have demonstrated effectiveness across
various data types. In our experiments, we apply SIREN for
spatially sparse ST and FFN for denser spatial distributions.

Following conventional INR approaches, we assume

4

‣SUICA overall framework: 
- Train a graph autoencoder (gae) to learn low-

dimensional representations of ST data


- Learn the coordinate-to-representation mapping using 
INRs


- Reconstruct gene expression profiles from the low 
dimensional representations with DICE loss to address 
zero inflation issue
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INRs are observed to have the tendency to yield normally
distributed outputs that are smooth (Lee et al., 2018), rather
than the zero-inflated ones of ST, presenting a significant
challenge. It is also crucial to ensure the numerical fidelity
of non-zero values for accurate cell type identification. It is
worth noting that high sparsity complicates the evaluation of
reconstruction quality, as an entirely empty prediction may
still result in low loss, yet be entirely unacceptable. To this
end, the design of the representations and evaluation proto-
col must address both sparsity and numerical fidelity—an
aspect that has, to our knowledge, not been fully explored
in the context of INRs.

3.2. Method

3.2.1. OVERVIEW

The overall pipeline is illustrated in Figure 2. To construct a
compact and dense embedding domain for subsequent INRs,
we first incorporate a graph-based encoder and pre-train
Graph Autoencoder (GAE) using the given ST slice in a self-
regressing manner. With the pre-trained GAE, we obtain the
encoded latent representation for all spots, denoted as zgt.
We then initiate INR tuning to optimize the neural mapping
from ST coordinates to embeddings, targeting zgt. Once
the INR reaches a stable state, we attach a decoder that is
pre-trained in our GAE. Subsequently, we fix the INR and
train the decoder to fit the raw dataset readouts ygt.

Concretely, we perform 3 different tasks with SUICA,
namely spatial imputation, gene imputation, and denoising,
whose data flows are summarized as follows.

• Spatial Imputation: Say an ST slice {(x,y)}, whose
data spots are split into a training subset and a test
subset. With the training subset, we train SUICA
(GAE+INR), and infer the test subset for evaluation.

• Gene Imputation: We randomly mute a part of the gene
expressions of the data matrix, fit SUICA with all of
the data, and infer all of the x.

• Denoising: The data flow is basically the same as gene
imputation, but with injected noise as the degradation.

3.2.2. GRAPH-AUGMENTED AUTOENCODER

The sequenced readouts of ST are known for an extremely
skewed distribution, represented as high-dimensional,
sparse data. This sparsity exacerbates the curse of dimen-
sionality, rendering data points increasingly dissimilar and
challenging to organize efficiently.

To address this, we leverage an AE to transform the high-
dimensional raw space into a compact, dense, and infor-
mative embedding space. Given the irregular structure, the
context information, context or neighborhood information
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GAE yields structure-aware and disentangled embeddings with
high-frequency details. GTV: Graph Total Variation.

is integrated through a graph structure, which we model
using a Graph Convolutional Network (GCN). Importantly,
the GCN is incorporated solely in the encoder, as the de-
coder—responsible for reconstructing interpolated embed-
dings back into the raw space—lacks the requisite graph
structure for such integration.

As illustrated in Figure 3, we conduct a graph-based spectral
analysis of embeddings generated by both the AE and the
GAE. Specifically, we construct a connectivity graph using
Euclidean distance between spots (k = 5) and calculate the
Graph Total Variation (GTV) for embeddings defined on
the built graph. Figure 3 is colored based on aggregated
edge-wise variations of each vertex, revealing that the GAE
produces shaper structural clues. Additionally, we compute
the channel-wise variance for both embeddings. Together
with the GTV results, these findings demonstrate that GAE
offers a more expressive and informative representation,
effectively capturing disentangled embeddings for ST.

To train GAE, we adopt the conventional Mean Square Error
(MSE) for supervision as

Lgae =
1

|My|
X

My

(ŷ � ygt)
2, (1)

where My represents the mask over all of the elements in y
to compute the element-wise average.

3.2.3. EMBEDDING MAPPING

With the pre-trained GAE and encoded representation zgt in
place, we proceed to train the INR to map x ! z. The com-
pact, dense embeddings provided by the GAE significantly
reduce the workload of the subsequent INR, which must fit
an otherwise highly skewed distribution.

For SUICA, we empirically select two baseline architec-
tures: FFN (Tancik et al., 2020) and SIREN (Sitzmann et al.,
2020), both of which have demonstrated effectiveness across
various data types. In our experiments, we apply SIREN for
spatially sparse ST and FFN for denser spatial distributions.

Following conventional INR approaches, we assume
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Gaussian-distributed error in the predicted ẑ and use
element-wise mean MSE loss for optimization:

Lembd =
1

|Mz|
X

Mz

(ẑ � zgt)
2. (2)

While ẑ can serve as the mapping output for downstream
analysis, we consider it as an intermediate result, decoding
this latent code back into the raw space to achieve a more
comprehensive reconstruction.

3.2.4. DECODING HEAD

A straightforward approach to decoding ẑ back to raw repre-
sentations is to directly use the pre-trained GAE decoder for
end-to-end INR tuning. However, this method encounters
two primary challenges. (1) The embedding mapping of
x ! z is error-prone, and domain shifts can severely im-
pair decoding performance, compounding with the inherent
imperfections in GAE’s reconstruction. (2) A pre-trained
decoder can become trapped in local minima, impeding the
optimization of the embedding mapping if the INR depends
on gradients from the decoder. To address (1)(2), we first
warm up the INR with Equation (2) alone to stabilize the
mapping, then attach the pre-trained decoder to learn the
mapping from z ! y, leaving the INR fixed. This decoder-
only training phase is designed to finetune a case-specific
decoder that compensates for mapping errors and minimizes
cumulative errors.

In INR regression tasks, norm-based loss functions (e.g.,
`2 norm or MSE) are typically used, as they assume nor-
mally (Gaussian) distributed errors. However, for zero-
inflated ST data, this assumption is invalid. To handle the
imbalanced distribution of zero and non-zero values, we
apply Dice Loss (Sudre et al., 2017), which is sensitive to
class imbalance and treats the regression task as a quasi-
classification one. Dice Loss optimizes for Intersection
over Union (IoU) between the prediction map and binary
ground truth. Specifically, we use the non-negative half of
tanh(·) to map network outputs into a pseudo-probability
range [0, 1), and compute the intersection using element-
wise Hadamard products with the ground truth. To avoid
division by 0, Dice Loss is computed as:

Ldice = 1 �
2

P
(tanh(ŷ) � sgn(ygt)) + ✏P

tanh(ŷ) +
P

sgn(ygt) + ✏
, (3)

where sgn(·) denotes the sign function returning 0 when the
input is 0 and +1/-1 when the input is positive/negative. The
full reconstruction loss function is then defined as:
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where M+

y represents the binary mask for ygt > 0, and �
mitigates Dice Loss’s numerical instability.

4. Experiments
4.1. Datasets & Metrics

For a quantitative benchmarking, we involve a nanoscale
resolution Stereo-seq (SpaTial Enhanced REsolution Omics-
sequencing) dataset, MOSTA (Chen et al., 2022a). MOSTA
consists of a total of 53 sagittal sections from C57BL/6
mouse embryos at 8 progressive stages using Stereo-seq,
from which we take 1 slice for each stage (from E9.5 to
E16.5) for benchmarking. In addition to Stereo-seq, we
also leverage ST data by other common platforms, i.e.,
Slide-seqV2, 10x Genomics Visium (see Appendix) and
MERFISH (see Appendix), to further demonstrate the gen-
eralization of SUICA.

As for evaluation of the fitting performance with super-high
dimensional data, we focus on 3 aspects, namely numeri-
cal fidelity, statistical correlation, and bio-conservation. For
numerical fidelity, we apply MSE, MAE (Mean Absolute Er-
ror) and cosine similarity to measure the significant, subtle
and directional errors between the predicted and ground-
truth values respectively. Note that we only measure numer-
ical fidelity on non-zero values considering the zero-inflated
distribution of ST. To measure the statistical correlation,
we employ Pearson Correlation Coefficient and Spearman’s
Rank Correlation Coefficient (Spearman’s ⇢), with both of
them ranging from -1 to 1. Lastly, to evaluate how well
the prediction preserves cellular heterogeneity and spatial
coherence within the microenvironment of the slice, we use
the Adjusted Rand Index (ARI) as a metric for quantifying
bio-conservation leveraging the independent hand-crafted
cell type annotations.

4.2. Evaluation Protocol

As is the conventional data flow for INRs, SUICA infers
gene expressions with coordinates as inputs after fitting the
given (x,y) pairs. We apply SUICA to perform degradation-
agnostic reconstruction upon ST data under various common
degradations, including spatial sparsity, gene drop-out, and
noise, to which we refer as spatial imputation, gene imputa-
tion and denoising respectively for clarity. Accordingly, we
follow different evaluation protocols: for spatial imputation,
we randomly sample 80% of the spots for training, leaving
the rest 20% for evaluation; for gene imputation, we ran-
domly mute 70% of the elements in the data matrices; for
denoising, a standard Gaussian noise is injected to the raw
data. Note that, such reconstruction is completely based on
the great approximation power and internal smoothness of
INRs without any beforehand knowledge of the degradation
type in a reference-free manner.

For comparison, we compare SUICA with rule-based
well-known INR variants (FFN (Tancik et al., 2020) and
SIREN (Sitzmann et al., 2020)), and the SOTA learning-
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Gaussian-distributed error in the predicted ẑ and use
element-wise mean MSE loss for optimization:
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While ẑ can serve as the mapping output for downstream
analysis, we consider it as an intermediate result, decoding
this latent code back into the raw space to achieve a more
comprehensive reconstruction.

3.2.4. DECODING HEAD

A straightforward approach to decoding ẑ back to raw repre-
sentations is to directly use the pre-trained GAE decoder for
end-to-end INR tuning. However, this method encounters
two primary challenges. (1) The embedding mapping of
x ! z is error-prone, and domain shifts can severely im-
pair decoding performance, compounding with the inherent
imperfections in GAE’s reconstruction. (2) A pre-trained
decoder can become trapped in local minima, impeding the
optimization of the embedding mapping if the INR depends
on gradients from the decoder. To address (1)(2), we first
warm up the INR with Equation (2) alone to stabilize the
mapping, then attach the pre-trained decoder to learn the
mapping from z ! y, leaving the INR fixed. This decoder-
only training phase is designed to finetune a case-specific
decoder that compensates for mapping errors and minimizes
cumulative errors.

In INR regression tasks, norm-based loss functions (e.g.,
`2 norm or MSE) are typically used, as they assume nor-
mally (Gaussian) distributed errors. However, for zero-
inflated ST data, this assumption is invalid. To handle the
imbalanced distribution of zero and non-zero values, we
apply Dice Loss (Sudre et al., 2017), which is sensitive to
class imbalance and treats the regression task as a quasi-
classification one. Dice Loss optimizes for Intersection
over Union (IoU) between the prediction map and binary
ground truth. Specifically, we use the non-negative half of
tanh(·) to map network outputs into a pseudo-probability
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wise Hadamard products with the ground truth. To avoid
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4. Experiments
4.1. Datasets & Metrics

For a quantitative benchmarking, we involve a nanoscale
resolution Stereo-seq (SpaTial Enhanced REsolution Omics-
sequencing) dataset, MOSTA (Chen et al., 2022a). MOSTA
consists of a total of 53 sagittal sections from C57BL/6
mouse embryos at 8 progressive stages using Stereo-seq,
from which we take 1 slice for each stage (from E9.5 to
E16.5) for benchmarking. In addition to Stereo-seq, we
also leverage ST data by other common platforms, i.e.,
Slide-seqV2, 10x Genomics Visium (see Appendix) and
MERFISH (see Appendix), to further demonstrate the gen-
eralization of SUICA.

As for evaluation of the fitting performance with super-high
dimensional data, we focus on 3 aspects, namely numeri-
cal fidelity, statistical correlation, and bio-conservation. For
numerical fidelity, we apply MSE, MAE (Mean Absolute Er-
ror) and cosine similarity to measure the significant, subtle
and directional errors between the predicted and ground-
truth values respectively. Note that we only measure numer-
ical fidelity on non-zero values considering the zero-inflated
distribution of ST. To measure the statistical correlation,
we employ Pearson Correlation Coefficient and Spearman’s
Rank Correlation Coefficient (Spearman’s ⇢), with both of
them ranging from -1 to 1. Lastly, to evaluate how well
the prediction preserves cellular heterogeneity and spatial
coherence within the microenvironment of the slice, we use
the Adjusted Rand Index (ARI) as a metric for quantifying
bio-conservation leveraging the independent hand-crafted
cell type annotations.

4.2. Evaluation Protocol

As is the conventional data flow for INRs, SUICA infers
gene expressions with coordinates as inputs after fitting the
given (x,y) pairs. We apply SUICA to perform degradation-
agnostic reconstruction upon ST data under various common
degradations, including spatial sparsity, gene drop-out, and
noise, to which we refer as spatial imputation, gene imputa-
tion and denoising respectively for clarity. Accordingly, we
follow different evaluation protocols: for spatial imputation,
we randomly sample 80% of the spots for training, leaving
the rest 20% for evaluation; for gene imputation, we ran-
domly mute 70% of the elements in the data matrices; for
denoising, a standard Gaussian noise is injected to the raw
data. Note that, such reconstruction is completely based on
the great approximation power and internal smoothness of
INRs without any beforehand knowledge of the degradation
type in a reference-free manner.

For comparison, we compare SUICA with rule-based
well-known INR variants (FFN (Tancik et al., 2020) and
SIREN (Sitzmann et al., 2020)), and the SOTA learning-
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Gaussian-distributed error in the predicted ẑ and use
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While ẑ can serve as the mapping output for downstream
analysis, we consider it as an intermediate result, decoding
this latent code back into the raw space to achieve a more
comprehensive reconstruction.

3.2.4. DECODING HEAD

A straightforward approach to decoding ẑ back to raw repre-
sentations is to directly use the pre-trained GAE decoder for
end-to-end INR tuning. However, this method encounters
two primary challenges. (1) The embedding mapping of
x ! z is error-prone, and domain shifts can severely im-
pair decoding performance, compounding with the inherent
imperfections in GAE’s reconstruction. (2) A pre-trained
decoder can become trapped in local minima, impeding the
optimization of the embedding mapping if the INR depends
on gradients from the decoder. To address (1)(2), we first
warm up the INR with Equation (2) alone to stabilize the
mapping, then attach the pre-trained decoder to learn the
mapping from z ! y, leaving the INR fixed. This decoder-
only training phase is designed to finetune a case-specific
decoder that compensates for mapping errors and minimizes
cumulative errors.

In INR regression tasks, norm-based loss functions (e.g.,
`2 norm or MSE) are typically used, as they assume nor-
mally (Gaussian) distributed errors. However, for zero-
inflated ST data, this assumption is invalid. To handle the
imbalanced distribution of zero and non-zero values, we
apply Dice Loss (Sudre et al., 2017), which is sensitive to
class imbalance and treats the regression task as a quasi-
classification one. Dice Loss optimizes for Intersection
over Union (IoU) between the prediction map and binary
ground truth. Specifically, we use the non-negative half of
tanh(·) to map network outputs into a pseudo-probability
range [0, 1), and compute the intersection using element-
wise Hadamard products with the ground truth. To avoid
division by 0, Dice Loss is computed as:
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|ŷ�ygt|+�Ldice,

(4)
where M+

y represents the binary mask for ygt > 0, and �
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4.1. Datasets & Metrics

For a quantitative benchmarking, we involve a nanoscale
resolution Stereo-seq (SpaTial Enhanced REsolution Omics-
sequencing) dataset, MOSTA (Chen et al., 2022a). MOSTA
consists of a total of 53 sagittal sections from C57BL/6
mouse embryos at 8 progressive stages using Stereo-seq,
from which we take 1 slice for each stage (from E9.5 to
E16.5) for benchmarking. In addition to Stereo-seq, we
also leverage ST data by other common platforms, i.e.,
Slide-seqV2, 10x Genomics Visium (see Appendix) and
MERFISH (see Appendix), to further demonstrate the gen-
eralization of SUICA.

As for evaluation of the fitting performance with super-high
dimensional data, we focus on 3 aspects, namely numeri-
cal fidelity, statistical correlation, and bio-conservation. For
numerical fidelity, we apply MSE, MAE (Mean Absolute Er-
ror) and cosine similarity to measure the significant, subtle
and directional errors between the predicted and ground-
truth values respectively. Note that we only measure numer-
ical fidelity on non-zero values considering the zero-inflated
distribution of ST. To measure the statistical correlation,
we employ Pearson Correlation Coefficient and Spearman’s
Rank Correlation Coefficient (Spearman’s ⇢), with both of
them ranging from -1 to 1. Lastly, to evaluate how well
the prediction preserves cellular heterogeneity and spatial
coherence within the microenvironment of the slice, we use
the Adjusted Rand Index (ARI) as a metric for quantifying
bio-conservation leveraging the independent hand-crafted
cell type annotations.

4.2. Evaluation Protocol

As is the conventional data flow for INRs, SUICA infers
gene expressions with coordinates as inputs after fitting the
given (x,y) pairs. We apply SUICA to perform degradation-
agnostic reconstruction upon ST data under various common
degradations, including spatial sparsity, gene drop-out, and
noise, to which we refer as spatial imputation, gene imputa-
tion and denoising respectively for clarity. Accordingly, we
follow different evaluation protocols: for spatial imputation,
we randomly sample 80% of the spots for training, leaving
the rest 20% for evaluation; for gene imputation, we ran-
domly mute 70% of the elements in the data matrices; for
denoising, a standard Gaussian noise is injected to the raw
data. Note that, such reconstruction is completely based on
the great approximation power and internal smoothness of
INRs without any beforehand knowledge of the degradation
type in a reference-free manner.

For comparison, we compare SUICA with rule-based
well-known INR variants (FFN (Tancik et al., 2020) and
SIREN (Sitzmann et al., 2020)), and the SOTA learning-
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Table 6. Quantitative benchmarking results of spatial imputation on two Visium ST cases (Palla et al., 2022; Wei et al., 2022). Note that
for Visium-Human Brain, there is no annotation of cell type for the evaluation of ARI, while reference ARI is 0.428 for Mouse Brain.
Bold figures are best scores and underlined figures are second-best. MAE/MSE: ⇥10�2 for Human Brain while ⇥10�1 for Mouse Brain.

Methods Visium-Human Brain Visium-Mouse Brain
MAE# MSE# Cosine" Pearson" Spearman" MAE# MSE# Cosine" Pearson" Spearman" ARI"

FFN (Tancik et al., 2020) 5.76 0.881 0.772 0.786 0.402 5.95 5.85 0.832 0.741 0.581 0.000587
SIREN (Sitzmann et al., 2020) 6.58 0.933 0.756 0.747 0.196 5.35 4.29 0.878 0.804 0.647 0.359

STAGE (Li et al., 2024) 6.19 0.805 0.795 0.772 0.223 4.55 3.20 0.918 0.825 0.666 0.140
TRIPLEX (Chung et al., 2024) 4.75 0.560 0.881 0.850 0.319 9.35 14.0 0.00 -0.00682 -0.00715 0.358
UNIv2 (Chen et al., 2024) 7.30 1.41 0.723 0.633 0.129 6.94 7.88 0.790 0.631 0.425 0.228

SUICA (Ours) 4.99 0.567 0.860 0.846 0.445 3.68 2.45 0.932 0.800 0.660 0.393

reconstruction is taken care of the GAE. The progressive
training paradigm also guarantees that each module is doing
the assigned job, keeping the coupling at minimum.

According to the experimental results, SUICA not only
achieves better quantitative scores for benchmarking, but
also exhibits much richer bio-conservation for downstream
applications.

D. Human and Mouse Brains Visium
Different from Stereo-seq datasets, Visium is a lower-
resolution but more affordable ST technology, on which
we additionally compare the model performance. The exper-
iments are conducted under the task of spatial imputation.
Due to the lack of independent cell-type annotations, ARI
is not applicable in Visium-Human Brain dataset (Wei et al.,
2022). On the Visium-Mouse Brain dataset (Palla et al.,
2022), SUICA demonstrates improved ARI, which indi-
cates that the predictions can more accurately describe the
underlying cellular heterogeneity. Note that for readers’
information, we also involve SOTA histology-aided imputa-
tion methods TRIPLEX (Chung et al., 2024) and UNI (Chen
et al., 2024) for comparison, which additionally has access
to extra reference. We have also found that TRIPLEX is
rather sensitive to dataset-specific characteristics.

E. MERFISH
MERFISH is an imaging-based ST technique that enables
the highly multiplexed imaging of RNA molecules in cells
while maintaining their spatial context. Compared to the
Slide-seqV2, 10x Visium, and Stereo-seq technologies used
in our manuscript, MERFISH data can quantify significantly
fewer genes for individual cells. In Table 7, we evaluate
the performance of SUICA using a human heart MERFISH
dataset (Farah et al., 2024) with 228,635 cells and 238 genes,
with the setting of spatial imputation. SUICA achieves a sig-
nificant lower mean absolute error (MAE) and mean square
error (MSE), and the cosine similarity is at least 2.28%
higher than other methods, showing its high numerical fi-
delity. Following the bio-conservation analysis scheme, we

Figure 7. Spatially visualized predicted spots on MERFISH human
heart (Farah et al., 2024).

Table 7. Quantitative results of spatial imputation on MERFISH
human heart (Farah et al., 2024). MAE/MSE: ⇥10�1.

Methods MAE# MSE# Cosine" Pearson" Spearman"
FFN (Tancik et al., 2020) 6.06 5.86 0.840 0.717 0.554
SIREN (Sitzmann et al., 2020) 5.54 4.98 0.864 0.759 0.606
STAGE (Li et al., 2024) 5.48 5.10 0.870 0.709 0.558
SUICA 4.65 3.92 0.892 0.718 0.548

annotate the cell types for predicted spots of MERFISH data
using dominant cell types in individual clusters. We visu-
alize the spatial bio-conservation by coloring the cell types
in Figure 7. The results show that the SUICA predictions
mimic the ground-truth evidenced the capability of SUICA
to predict unseen spots in the MERFISH datasets.

F. Ablation on Resolution
To help with the data-efficiency analysis of SUICA, we per-
form experiments under the task of spatial imputation with
E16.5 embryo of Stereo-seq MOSTA (Chen et al., 2022a),
the results of which are shown in Table 8. The percentage
refers to the the proportion of training samples with regard
to the whole dataset, while the test set remains the same
(20% of all spots).

G. Data Pre-processing
To enable the evaluation of Pearson Correlation Coefficient
and Spearman’s Rank Correlation Coefficient, before the
experiments we remove empty rows and lines to make sure
each spot is at least expressed by a limited number of genes.

Note that the outputs of conventional INR-based tasks are
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Table 8. Ablation study on the data-efficiency of SUICA. % rep-
resents the proportion of the spots used for training while test set
remains 20%. MAE/MSE: ⇥10�2.

% MAE# MSE# Cosine" Pearson"
80% 8.01 1.47 0.807 0.761
60% 7.96 1.52 0.801 0.752
40% 8.00 1.59 0.790 0.739
20% 8.14 1.62 0.786 0.738

strictly bounded, where the linear layer is usually clamped
or compressed by sigmoid. For ST data, we do not have such
assumption and only employ ReLU as the final activation.
Therefore, as a common practice in ST analysis (Melsted
et al., 2021; Hwang et al., 2018), we remove the genes
whose expressions are overly high and normalize each cell
by total counts over all genes of the cell so that every cell
has the same total count after normalization while keeping
the original sparsity.

H. Limitations
One of the significant limitations in SUICA roots in
the case-by-case training paradigm of INRs. Similar to
NeRF (Mildenhall et al., 2020), for each case, i.e., each
ST slice, we need to training a new model from scratch.
Considering the overwhelming heterogeneity of different
ST data, we temporarily compromise in this issue but ac-
knowledge that incorporating domain knowledge to make
SUICA generalizable is an interesting future work.

Another potential limitation is that SUICA prefers high-
quality ST data, in terms of both spatial density and se-
quencing depth, as can be indicated from the experimental
results we provide. SUICA exhibits the most performance
gain in Stereo-seq compared to other platforms and when the
gene expressions no longer meet the super-high dimensional
sparse assumption, SUICA will degenerate to a vanilla INR,
as is consistent with the results of MERFISH in Table 7.
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