In-Context Meta Learning Induces Multi-Phase Circuit Emergence

松尾·岩澤研究室 MATSUO-IWASAWA LAB UTOKYO

Gouki Minegishi

paper

In Context Learning (ICL)

- *In-context learning* means **inferring the task** from the prompt examples and predicting the answer accordingly.
- Why large language models can perform in-context learning so effectively remains an open research question.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

Brown et al., "Language Models are Few-Shot Learners"

Mechanistic Interpretability

- Reverse-engineering methods that **causally** uncover a model's internal computation, beyond surface I/O or attribution analyses
- **Circuits**: functional units inside the network that implements a specific capability
 - Induction Head the canonical in-context-learning circuit
 - Operation: locate a matching token earlier in the prompt and copy the *next* token, letting the model predict the correct continuation

Conmy et al., "Towards Automated Circuit Discovery for Mechanistic Interpretability"

Research Questions

Induction heads is the simple match-and-copy circuit. We still don't know what kind of circuits emerge in real few-shot prompts.

What kind of circuit works?
How does the circuit grow?

Few-shots prompts

Prediction

fromage

Toy Experiment Setup

- Problem Setup
 - We designed a task involving 64 classes and 32 labels, with context-specific class-label pairings.
 - To answer accurately, the model must infer the underlying task from the context.
- Network Structure
 - 2-layer attention only Transformer + 1-layer MLP (classification)

Problem setup

Network structure MLP Attention2 Attention1

3-Phase Transition and 3-Circuit Emergence

- The model arrives at 100% undergoing three accuracy plateaus
- 3-Circuits at each plateau
 - Non-Context Circuit; NCC (Phase1):
 The model Ignore the context and relying solely on the model's weights.
 - Semi-Context Circuit; SCC (Phase2):
 The model not only leverages weights memory but also attends to label tokens (i.e., half of the context)
 - Full-Context Circuit; FCC (Phase3): The model use the entire context.

Circuit	Accuracy ($T=3$)	Layer 1	Layer 2
NCC	30–40%	Bigram	Bigram
SCC	≈75%	Label Attention	Bigram
FCC	100%	Chunk Example	Label Attention

Circuit Metrics

- 1. Bigram Metric: Attention from a query token to itself.
- **2. Label Attention Metric:** Total attention from the query to all label tokens in context.
- **3. Chunk Example Metric:** Attention from each example token x to its paired label ℓ .

attention weights $p_{i,j}^{\mu,h}$ (where μ is the layer and h the head), for a context window of length 2N+1

Metric	Formula	
Bigram	$p_{2N+1,2N+1}^{\mu,h}$	
Label Attention	$\sum_{k=1}^{N} p_{2N+1,2k}^{\mu,h}$	
Chunk Example	$\frac{1}{N} \sum_{k=1}^{N} p_{2k,2k-1}^{\mu,h}$	

Correlation with Accuracy:

The timing of these metric transitions closely matches the model's discrete accuracy jumps, validating that our metrics quantitatively capture the internal circuit reconfigurations across all three learning phases

3 Circuits in LLM

Setup

- Test whether our identified circuits appear in LLMs by evaluating a pretrained GPT2-XL (48 layers) on SST2 (872 samples).
- 2-shot prompt: two labeled examples (Review: {text}, Sentiment: {label}) and a third, unlabeled query

Results

 Chunk Example scores peak in earlier layers while Label Attention scores are higher in middle or later layers, consistent with the final circuit (FCC) behavior in our 2-layer attention-only model

Conclusion and Future Direction

Conclusion

- We watched what happens inside a model in a practical few-shot setting.
- The model passed through three distinct circuits—NCC, SCC, and FCC—before it reached perfect accuracy.
- Those same circuits also show up inside a pretrained LLM (GPT-2 XL), so the toy findings really scale.

You'll find extra details in the paper—multi-head results and how the circuits depend on data distribution property.

松尾·岩澤研究室 MATSUO-IWASAWA LAB UTOKYO