
Exact Upper and Lower Bounds
for the Output Distribution of Neural Networks

with Random Inputs

Andrey Kofnov1 Daniel Kapla1

Ezio Bartocci2 Efstathia Bura1

1Faculty of Mathematics and Geoinformation, TU Wien, Vienna, Austria

2Faculty of Informatics, TU Wien, Vienna, Austria

Vancouver, ICML 2025



Neural Networks under Uncertainty

▶ Neural networks are
typically deterministic

▶ Inputs in real-world are
noisy/uncertain

▶ Why characterize output
distribution?
▶ Risk quantification
▶ Robustness
▶ Explainability

𝑌𝑋

𝑿 ∼ 𝐹𝑿 𝑓(𝑿) ∼ 𝐹𝒀

𝑓(𝑋)

ℙ(𝒀 ≤ 𝑦)



★ Our Contributions

▶ Exact cdf computation for
ReLU NNs + piecewise polynomial inputs

▶ Bounds for general feedforward NNs via ReLU approximation

▶ New Universal Distribution Approximation Theorem (UDAT):
Constructive proof



ReLU Split
Ỹ : K → RnL is a ReLU neural network with

▶ K =
qY⋃
j=1

Pj - input domain is represented as a union of polytopes,

▶ Ỹ
∣∣
Pj

= NN j : Pj → RnL - is an affine transformation

We utilize a GPU-accelerated algorithm from [Berzins, 2023]1.

1Arturs Berzins. Polyhedral complex extraction from ReLU networks using edge subdivision. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

Type equation here.

𝑁𝑁!! 𝑥", 𝑥# = 𝒄!! + 𝑽!!
𝑥"
𝑥#

𝓟𝒋𝟐

𝑁𝑁!" 𝑥", 𝑥# = 𝒄!" + 𝑽!"
𝑥"
𝑥#

𝓟𝒋𝟏



Piecewise polynomial pdf
ϕ : K → R is a piecewise polynomial2 if

▶ K =
q⋃

i=1
ki - input domain is represented as a union of simplices,

▶ ϕ
∣∣
ko

i
: ko

i → R - is a polynomial

2By the Stone–Weierstrass Theorem, any continuous function on a compact hyperrectangle can be
approximated arbitrarily well by polynomials

Type equation here.

𝜙!!(𝑥", 𝑥#) =

𝜙!"(𝑥", 𝑥#) =

𝒌𝒊𝟐

𝒌𝒊𝟏



Intersection of ReLU-based polytopes with pdf-based
simplices

For every ReLU-based polytope Pj and every pdf-based simplex ki we
compute an intersection Pj ∩ ki to define an area where

▶ the Neural Network Ỹ behaves as an affine transformation
▶ the input density ϕ(x) is a polynomial

𝓟𝒋𝟐 ∩ 𝒌𝒊𝟐

𝓟𝒋𝟏 ∩ 𝒌𝒊𝟏

𝓟𝒋𝟏

𝒌𝒊𝟏

𝓟𝒋𝟐

𝒌𝒊𝟐



What is the reduced polytope?

P(Ỹ
∣∣
Pj

≤ y) =
ˆ

{x∈Pj}∩{NN j(x)≤y}

ϕ(x)dx =
∑

i

ˆ

P r
j,i

ϕi(x)dx,

where P r
j,i = Pj ∩ ki ∩ {NN j(x) ≤ y} – reduced polytope

𝑁𝑁!! 𝑥", 𝑥#

𝒌𝒊𝟐

𝒌𝒊𝟏

𝓟𝒋𝟐

𝓟𝒋𝟏

𝓟𝒋𝟐,𝒊𝟐
𝒓

𝓟𝒋𝟏,𝒊𝟏
𝒓

𝑁𝑁!! 𝑥", 𝑥# ≤ 𝒚

𝑁𝑁!" 𝑥", 𝑥# ≤ 𝒚



Delaunay triangulation leads to the union of simplices
Every convex polytope P r

j,i can be triangulated and represented as a
finite union of disjoint simplices

P r
j,i =

Si,j⋃
s=1

Ti,j,s

Type equation here.

𝒌𝒊𝟐

𝒌𝒊𝟏

𝓟𝒋𝟐

𝓟𝒋𝟏

𝓟𝒋𝟐,𝒊𝟐
𝒓

𝓟𝒋𝟏,𝒊𝟏
𝒓

𝚻𝐢𝟐,𝐣𝟐,𝟏

𝚻𝐢𝟐,𝐣𝟐,𝟐

𝚻𝐢𝟏,𝐣𝟏,𝟏

𝚻𝐢𝟏,𝐣𝟏,𝟐



Exact CDF: ReLU + Piecewise Polynomial Input
▶ Compute integrals over the triangulation of reduced simplices

▶ Exact integration is made possible by the approach outlined in
[Lasserre, 2021]3

▶ Produce exact CDF:

FỸ(y) = P(Ỹ ≤ y) =
∑

j
P(Ỹ

∣∣
Pj

≤ y) =
∑
i,j,s

ˆ
Ti,j,s

ϕi(x)dx

3Jean B. Lasserre. Simple formula for integration of polynomials on a simplex. BIT Numerical
Mathematics, 61(2):523–533, 2021.

Type equation here.

𝒌𝒊𝟐

𝒌𝒊𝟏

𝓟𝒋𝟐

𝓟𝒋𝟏

𝓟𝒋𝟐,𝒊𝟐
𝒓

𝓟𝒋𝟏,𝒊𝟏
𝒓

𝚻𝐢𝟐,𝐣𝟐,𝟏

𝚻𝐢𝟐,𝐣𝟐,𝟐

𝚻𝐢𝟏,𝐣𝟏,𝟏

𝚻𝐢𝟏,𝐣𝟏,𝟐



Bounding Output of General Networks

▶ Approximate continuous monotonic piecewise twice
continuously differentiable activations (e.g., tanh) using
piecewise linear bounds.

▶ Construct upper and lower ReLU networks by propagating
piecewise linear bounds through each node at every layer.:

fn(x) ≤ f(x) ≤ fn(x)

▶ Converges uniformly and monotonically to true NN.



Piecewise twice continuously differentiable activations
Let f : [a, a] → R be a continuous function, where

[a, a] =
n⋃

i=1
[ai , ai+1], a = a1 < a2 < · · · < an+1 = a,

and assume that f |[ai ,ai+1] ∈ C2([ai , ai+1]) for each i = 1, . . . , n.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

f|[0, 1](x) = x2

f|[1, 2](x) = (1 (x 1))3

f|[2, 3](x) = log(x 1)

Piecewise Twice Continuously Differentiable Function on [0, 3]



Linear interpolation

▶ Works for the upper approximation on a convex segment and the
lower approximation on a concave segment

▶ Choose a linking point in the middle of the interval, i.e.,
ak′ = (ak + ak+1)/2

▶ Perform linear interpolation using the linking point:

κ1 =
f(ak′)− f(ak)

ak′ − ak
, κ2 =

f(ak+1)− f(ak′)

ak+1 − ak′

f̃(τ) = f(ak) + (τ − ak)κ1, τ ∈ [ak , ak′ ]

f̃(τ) = f(ak′) + (τ − ak′)κ2, τ ∈ [ak′ , ak+1]

5 4 3 2 1 0
0.0

0.1

0.2

0.3

0.4

0.5 Sigmoid

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0 Sigmoid

Concave segment



Linear interpolation

▶ Works for the upper approximation on a convex segment and the
lower approximation on a concave segment

▶ Choose a linking point in the middle of the interval, i.e.,
ak′ = (ak + ak+1)/2

▶ Perform linear interpolation using the linking point:

κ1 =
f(ak′)− f(ak)

ak′ − ak
, κ2 =

f(ak+1)− f(ak′)

ak+1 − ak′

f̃(τ) = f(ak) + (τ − ak)κ1, τ ∈ [ak , ak′ ]

f̃(τ) = f(ak′) + (τ − ak′)κ2, τ ∈ [ak′ , ak+1]

5 4 3 2 1 0
0.0

0.1

0.2

0.3

0.4

0.5

Link Point

Sigmoid

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

Link Point

Sigmoid

Concave segment



Linear interpolation

▶ Works for the upper approximation on a convex segment and the
lower approximation on a concave segment

▶ Choose a linking point in the middle of the interval, i.e.,
ak′ = (ak + ak+1)/2

▶ Perform linear interpolation using the linking point:

κ1 =
f(ak′)− f(ak)

ak′ − ak
, κ2 =

f(ak+1)− f(ak′)

ak+1 − ak′

f̃(τ) = f(ak) + (τ − ak)κ1, τ ∈ [ak , ak′ ]

f̃(τ) = f(ak′) + (τ − ak′)κ2, τ ∈ [ak′ , ak+1]

5 4 3 2 1 0
0.0

0.1

0.2

0.3

0.4

0.5

Link Point

Sigmoid
Upper approximation

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

Link Point

Sigmoid
Lower approximation

Concave segment



Piecewise tangent

▶ Works for the upper approximation on a concave segment and the
lower approximation on a convex segment

▶ Compute the tangents of the function at the segment boundaries

▶ Define the approximation as a piecewise tangent function, with
the linking point at the intersection

ak′ =
f(ak)− f(ak+1)− (f ′+(ak)ak − f ′−(ak+1)ak+1)

f ′−(ak+1)− f ′+(ak)

f̃(τ) = f(ak) + f ′+(ak)(τ − ak), τ ∈ [ak , ak′ ]

f̃(τ) = f(ak+1) + f ′−(ak+1)(τ − ak+1), τ ∈ [ak′ , ak+1] ,

5 4 3 2 1 0
0.1

0.0

0.1

0.2

0.3

0.4

0.5 Sigmoid

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

Sigmoid

Concave segment



Piecewise tangent

▶ Works for the upper approximation on a concave segment and the
lower approximation on a convex segment

▶ Compute the tangents of the function at the segment boundaries

▶ Define the approximation as a piecewise tangent function, with
the linking point at the intersection

ak′ =
f(ak)− f(ak+1)− (f ′+(ak)ak − f ′−(ak+1)ak+1)

f ′−(ak+1)− f ′+(ak)

f̃(τ) = f(ak) + f ′+(ak)(τ − ak), τ ∈ [ak , ak′ ]

f̃(τ) = f(ak+1) + f ′−(ak+1)(τ − ak+1), τ ∈ [ak′ , ak+1] ,

5 4 3 2 1 0
0.1

0.0

0.1

0.2

0.3

0.4

0.5 Sigmoid
Tangents

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

Sigmoid
Tangents

Concave segment



Piecewise tangent

▶ Works for the upper approximation on a concave segment and the
lower approximation on a convex segment

▶ Compute the tangents of the function at the segment boundaries

▶ Define the approximation as a piecewise tangent function, with
the linking point at the intersection

ak′ =
f(ak)− f(ak+1)− (f ′+(ak)ak − f ′−(ak+1)ak+1)

f ′−(ak+1)− f ′+(ak)

f̃(τ) = f(ak) + f ′+(ak)(τ − ak), τ ∈ [ak , ak′ ]

f̃(τ) = f(ak+1) + f ′−(ak+1)(τ − ak+1), τ ∈ [ak′ , ak+1] ,

5 4 3 2 1 0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Link Point

Sigmoid
Lower approximation
Tangents

Convex segment

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

Link Point

Sigmoid
Upper approximation
Tangents

Concave segment



Combination of all segments
▶ Refining the grid results in both bounds converging

monotonically to the true function within the domain.

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Lower 4 Subsegments
Upper 4 Subsegments

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Lower 8 Subsegments
Upper 8 Subsegments

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Lower 20 Subsegments
Upper 20 Subsegments

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Lower 36 Subsegments
Upper 36 Subsegments



Propagation of bounds
▶ Propagation of bounds through the entire network generates

accurate bounds on the network output.

24 subsegments 48 subsegments

12 subsegments4 subsegments



Universal Distribution Approximation Theorem (UDAT)

▶ The theorem states that the cdf of a continuous function of a
random vector can be closely approximated from above and
below using ReLU neural networks.



Practical Use of the UDAT
▶ According to the Universal Approximation Theorem [Hornik

et al., 1989]4, any continuous function on a compact domain can
be approximated (and bounded) using a ReLU network.

▶ This applies to any continuous pdf and to any neural network
with continuous activation functions

Approximation

Approximation

Refinement

Refinement

4Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.



Local Bounds on the input pdf

▶ The pdf is bounded using
ReLU neural networks

▶ There exists a collection of
simplices with local affine
bounds

▶ On a simplex, every affine
transformation can be
bounded

▶ This results in piecewise
polynomial bounds of the
input pdf



Calculation of upper and lower bounds



Calculation of upper and lower bounds



Calculation of upper and lower bounds



Thank you!



References I

Arturs Berzins. Polyhedral complex extraction from ReLU networks using edge subdivision. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 2234–2244.
PMLR, 23–29 Jul 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

Jean B. Lasserre. Simple formula for integration of polynomials on a simplex. BIT Numerical
Mathematics, 61(2):523–533, 2021.


	Outline
	References

