Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation

He Li¹, Haoang Chi^{2,1}, Mingyu Liu¹, Wanrong Huang¹, Liyang Xu¹, Wenjing Yang¹

¹National University of Defense Technology, ²Academy of Military Science

{lihe_117, liumingyu, huangwanrong12, xuliyang08, wenjing.yang}@nudt.edu.cn, {haoangchi618}@gmail.com

ICML 2025 Poster

Presenter Introduction

Name: He Li / 李鹤

Affiliation: National University of Defense Technology

Current Status: Master student in Computer Technology

Advisor: Prof. Wenjing Yang

Research Interests: Causal Inference, Foundation Models

Email: lihe_117@nudt.edu.cn

Background

- ☐ What are spatial-temporal counterfactual outcomes estimation?
 - Estimate the outcome events in a spatial region under counterfactual treatment interventions, such as increased treatment duration or intensity, based on the observed spatial-temporal data.

☐ Motivation

- Counterfactual outcomes estimation is one of the most important problems in causal inference^[1].
- The spatial-temporal counterfactual outcomes estimation has a wide range of applications.
 - ❖ Epidemiology Isolation and Control of Infectious Diseases
 - ❖ Environmental Science Prevention and Monitoring of Resource Loss
 - **Economics** Evaluation of Regional Economic Policies

Methodology

- ☐ The IPW estimator
 - > We define the following estimator:

$$\hat{Y}_t(F_H, s) = \prod_{j=t-M+1}^t \frac{p_{h_j}(z_j)}{e_j(z_j)} \lambda_{Y_t^{ob}(z_{\leq t})}(s)$$

The above estimator can be seen as the intensity function that generates counterfactual outcomes $Y_t^{ob}(z_{\leq t}(F_H))$. Then according to the definition of intensity function, we have:

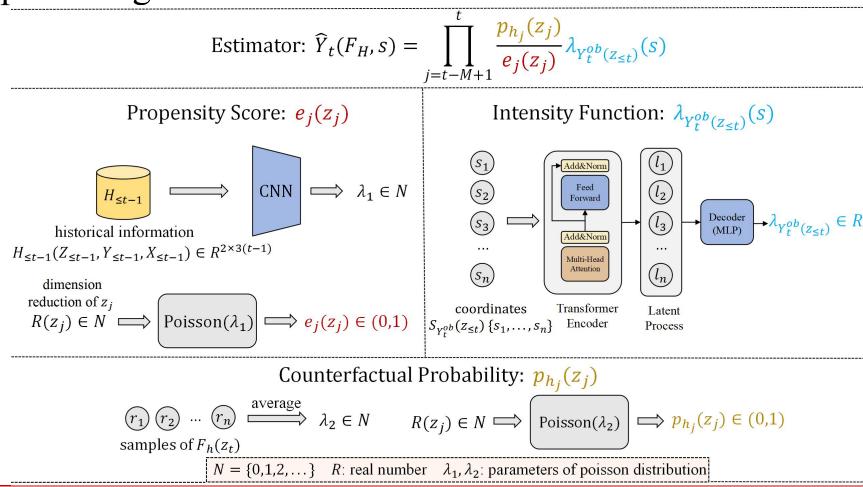
$$\hat{N}_t^{\omega}(F_H) = \int_{\omega} \hat{Y}_t(F_H, s) ds$$

 \triangleright Finally, we average the $\widehat{N_t^{\omega}}(F_H)$ over time to get the final estimator:

$$\hat{N}_{\omega}(F_H) = \frac{1}{T - M + 1} \sum_{t=M}^{T} \hat{N}_t^{\omega}(F_H)$$

Methodology

☐ Deep learning-based realization



Experiments

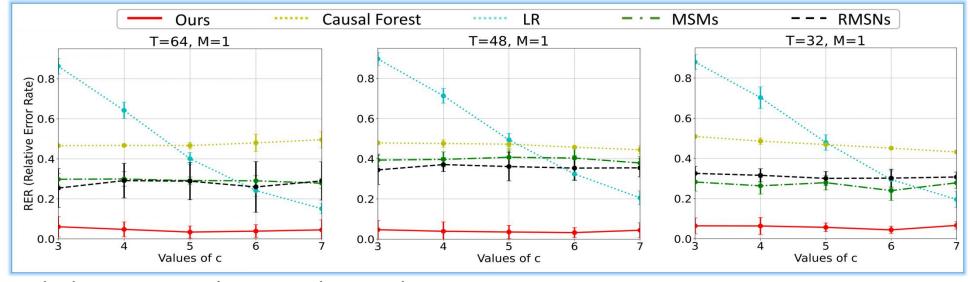
- Datasets
 - > Synthetic Data
 - We generate synthetic spatial-temporal data using rejection sampling.
 - Real Data
 - ❖ We employ the Global Forest Change Data^[1] and the UCDP Georeferenced Event Dataset^[2].
- □ Baselines
 - MSMs、RMSNs、Causal Forest、Linear Regression
- ☐ Metrics
 - For synthetic experiments, the metric is the relative error rate (RER). For real data experiments, we consider the consistency of our conclusions with existing literature.
- ☐ Intervention Parameters
 - The parameter *M* is introduced to control the duration of the treatment intervention. The parameter *c* is introduced to control the magnitude of the intervention.

^[1] Hansen, M. C., et al. High-resolution global maps of 21st-century forest cover change. science, 342(6160):850-853, 2013.

^[2] Croicu, M. and Sundberg, R. Ucdp georeferenced event dataset codebook version 4.0. Journal of Peace Research, 50(4):523-532, 2015.

Results

☐ Sythetic experimental results



☐ Real data experimental results

	c = 3	<i>c</i> = 4	<i>c</i> = 5	<i>c</i> = 6	<i>c</i> = 7
M = 1	20.6 ± 2.3	20.5 ± 2.2	20.7 ± 2.8	20.5 ± 1.9	20.8 ± 2.0
M = 3	21.5 ± 1.4	21.6 ± 2.4	22.3 ± 1.9	23.0 ± 1.3	23.3 ± 1.9
M = 5	22.4 ± 2.3	22.9 ± 1.8	23.6 ± 1.7	24.2 ± 1.2	24.7 ± 2.2
M = 7	24.7 ± 1.3	23.6 ± 1.7	26.7 ± 1.2	27.2 ± 1.5	28.0 ± 2.1

☐ Summary

- We study counterfactual outcomes estimation with the spatial-temporal attribute, a more general setting, and propose an effective deep-learning-based solution.
- We propose an efficient CNN-based method to address the calculation of propensity scores under the spatial-temporal setting. Besides, we employ the Transformer to address the modeling of spatial-temporal data.
- We empirically demonstrate the effectiveness of our approach through both simulated and real experiments.

☐ Future directions

- How can we design randomized experiments in spatial-temporal settings?
- How can we model causal relationships within continuous spatial-temporal data?
- How can we estimate counterfactual outcomes from continuous spatialtemporal processes?

Thank You!

Project Page: https://github.com/lihe-maxsize/DeppSTCI_Release_Version-master