Code Adaptive Message Passing: a General Framework to Mitigate Oversmoothing, "Oversquashing", and Underreaching Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, Francesco Alesiani NEC Laboratories Europe & University of Stuttgart # Technical Issues of Message Passing #### Oversmoothing: node representations converge to the same value #### Computational Bottlenecks: exponential amount of info needs to be compressed into a node representation #### Underreaching: we use less layers than needed (more layers increase the 2 other problems) #### Our Solutions #### Learn to Filter Messages ## Learn the Depth via simple Backpropagation - 1. Define importance distribution over (infinite) layers - 2. Dynamically Truncate the distribution to a finite value based on λ (using the quantile function) - 3. Every layer's output prediction weighted by importance – needs 1 readout per layer #### Deep Graph Network architecture: # Advantages ### 1. The model's **depth** grows/shrinks during training according to the task! We can encourage deeper/shallower models using a principled prior distribution ## 2. The model learns to control oversmoothing and "oversquashing" The amount of information to propagate is learned based on the task ### 3. Competitive performance with a classical GCN | Method | | peptides-func
Test AP↑ | peptides-struct
Test MAE ↓ | | |--------------------|--------------------------|-------------------------------|-------------------------------|---| | | GCN | 0.5930 ± 0.0023 | 0.3496 ± 0.0013 | - | | ~ | GINE | 0.5498 ± 0.0079 | 0.3547 ± 0.0045 | | | LRGB | GATEDGCN | 0.6069 ± 0.0035 | 0.3357 ± 0.0006 | | | K | TRANSFORMER | 0.6326 ± 0.0126 | 0.2529 ± 0.0016 | | | | SAN | 0.6439 ± 0.0075 | 0.2545 ± 0.0012 | | | | GPS | 0.6535 ± 0.0041 | 0.2500 ± 0.0005 | | | 7 | GCN | 0.6860 ± 0.0050 | 0.2460 ± 0.0007 | - | | RE-EVAI | GINE | 0.6621 ± 0.0067 | 0.2473 ± 0.0017 | | | E-I | GATEDGCN | 0.6765 ± 0.0047 | 0.2477 ± 0.0009 | | | R | GPS | 0.6534 ± 0.0091 | 0.2509 ± 0.0014 | _ | | | CRAWL | 0.7074 ± 0.0032 | 0.2506 ± 0.0022 | - | | | $DRew_{GCN}$ | 0.7150 ± 0.0044 | 0.2536 ± 0.0015 | | | | DREW _{GATEDGCN} | 0.6977 ± 0.0026 | 0.2539 ± 0.0007 | | | | EXPHORMER | 0.6527 ± 0.0043 | 0.2481 ± 0.0007 | | | | GRIT | 0.6988 ± 0.0082 | 0.2460 ± 0.0012 | | | RS | GRAPH VIT | 0.6942 ± 0.0075 | 0.2449 ± 0.0016 | | | ОтнЕ | G-MLPMIXER | 0.6921 ± 0.0054 | 0.2475 ± 0.0015 | • | | ō | LASER | 0.6440 ± 0.0010 | 0.3043 ± 0.0019 | | | | CO-GNN | 0.6990 ± 0.0093 | - | | | | NBA_{GCN} | 0.7207 ± 0.0028 | 0.2472 ± 0.0008 | | | | $NBA_{GATEDGCN}$ | 0.6982 ± 0.0014 | 0.2466 ± 0.0012 | | | | PH-DGN | 0.7012 ± 0.0045 | 0.2465 ± 0.0020 | | | | GRED | 0.7041 ± 0.0049 | 0.2584 ± 0.0015 | | | | PR-MPNN | 0.6825 ± 0.0086 | 0.2477 ± 0.0005 | | | | IPR-MPNN | 0.7210 ± 0.0039 | 0.2422 ± 0.0007 | | | AMP _{GCN} | | $0.7161^{\dagger} \pm 0.0047$ | $0.2446^{\dagger} \pm 0.0026$ | | | AMP_{GINE} | | $0.7065^{\dagger} \pm 0.0105$ | $0.2468^{\dagger} \pm 0.0026$ | | **AMP**GATEDGCN $0.6943^{\dagger} \pm 0.0046$ $0.2480^{\dagger} \pm 0.0012$ Eccentricity (AMP_{GCN}) Diameter (GCN) peptides-func (GCN) | | Diameter | Rel Imp | SSSP | Rel Imp | Eccentricity | Rel Imp | |--------------------|--------------------------------|---------|--------------------------------|---------|-------------------------------|---------| | GCN | 0.6146 ± 0.0375 | | 0.9132 ± 0.0051 | | 0.7398 ± 0.0705 | | | GAT | 1.4367 ± 0.3558 | | 0.6070 ± 0.0375 | | 1.0714 ± 0.0616 | | | GRAPHSAGE | 0.6146 ± 0.0744 | | -1.0139 ± 0.0120 | | 1.0859 ± 0.0001 | | | GIN | 0.2408 ± 0.0154 | | -0.2648 ± 0.4437 | | 0.9229 ± 0.0002 | | | GCNII | 0.5057 ± 0.0309 | | -0.9172 ± 0.4396 | | 0.7112 ± 0.0255 | | | DGC | 0.5601 ± 0.0220 | | -0.0254 ± 0.0077 | | 0.8051 ± 0.0017 | | | GRAND | 0.9477 ± 0.2160 | | 0.1909 ± 0.3103 | | 0.7450 ± 0.1369 | | | ADGN | -0.4530 ± 0.0883 | | -3.5448 ± 0.2749 | | 0.0547 ± 0.0732 | | | AMP _{GCN} | $-0.1072^{\dagger} \pm 0.0791$ | -81% | $0.5440^{\dagger} \pm 0.0108$ | -57% | $0.6054^{\dagger} \pm 0.0919$ | -26% | | AMP_{GIN} | $-0.4874^{\dagger} \pm 0.1111$ | -81% | $-3.0628^{\dagger} \pm 0.3159$ | -99% | $0.4093^{\dagger} \pm 0.0546$ | -69% | | AMP_{ADGN} | $-0.5891^{\dagger} \pm 0.0720$ | -27% | $-3.9579^{\dagger} \pm 0.0769$ | -61% | $0.0515^{\dagger} \pm 0.1819$ | -1% | | Avg Rel Imp | | -63% | | -72% | | -32% | Oversmoothing, "Oversquashing", Heterophily, Long-Range, and more: **Demystifying Common** Beliefs in Graph Machine Learning