ICML 2025

Thickness-aware E(3)-Equivariant 3D Mesh Neural Network

Sungwon Kim, Namkyeong Lee, Yunyoung Doh, Seungmin Shin Guimok Cho, Seung-Won Jeon, Sangkook Kim, Chanyoung Park

Presenter: Sungwon Kim

► The role of static analysis in manufacturing

Analysis & Simulation: Identify potential product risks under real-world conditions before moving into production.

https://onecadvn.com/en/solutions/3d-design

► The role of static analysis in manufacturing

► The role of static analysis in manufacturing

Conditions

- Temperature
- Pressure
- Injected position
- Viscosity
- Conductivity
- Cooling time
- Injection time
- ...

The role of static analysis in manufacturing

3D simulation is the key to building better products, faster and cheaper.

CHALLENGE: CONVENTIONAL SOLVERS

► Finite Element Method (FEM): High Computational Cost

Performing a single FEM analysis involves high computational costs and extended runtimes.

CHALLENGE: CONVENTIONAL SOLVERS

► Finite Element Method (FEM): High Computational Cost

Learning-based AI models can serve as powerful surrogates, significantly reducing the high computational cost of FEM simulations.

TASK

► Node-level deflection (3d) prediction

3D REPRESENTATION

► 3D Mesh: Vertices, Edges, and Faces

3D Mesh is one the best way to describe surfaces and volumes of object!

3D REPRESENTATION

► 3D Mesh: Volume mesh vs. Surface mesh

Volume mesh

Surface mesh

3D REPRESENTATION

► 3D Mesh: Volume mesh vs. Surface mesh

Surface meshes are **significantly faster, more cost-effective,** and better suited for modeling the **geometric properties** of a shape.

PROBLEM WITH SURFACE MESH

► Ignoring Critical Thickness Information

PROBLEM WITH SURFACE MESH

► Ignoring Critical Thickness Information

Surface meshes face challenges in modeling the interactions between thickness pair due to the lack of connections between opposing surfaces within the mesh

OUR MOTIVATION

► Bringing the gap between surface mesh efficiency and physical accuracy

We achieve accurate and efficient 3D analysis by modeling thickness interactions directly on the surface mesh.

► Core Idea 1: Thickness-Awareness

We introduce a 'thickness edge' to connect a node with its corresponding 'thickness paired node' on the opposing surface.

▶ Core Idea 1: Thickness-Awareness

Definition of a 'thickness paired node'

$$\mathcal{T}(v_i) = \underset{v_j \in V, v_j \neq v_i}{\operatorname{arg \, min}} \| \mathbf{x}_j - (\mathbf{x}_i - d \cdot \mathbf{n}_i^{\text{node}}) \|,$$

$$\mathcal{T}(v_i) \in V$$
, where $\mathcal{T}(v_i) \neq v_i$

 \mathbf{x} : coordinate, \mathbf{n}^{node} : normal vector

• Definition of a 'thickness'

$$t(v_i) = \|\mathbf{x}_i - \mathbf{x}_{\mathcal{T}(v_i)}\|$$

► Core Idea 1: Thickness-Awareness

Opposing nodes do not always define true 'thickness'.

They can also represent 'width', which has a weaker dynamic relationship.

▶ Core Idea 1: Thickness-Awareness

$$I_i = \frac{1}{1 + e^{\alpha(t(v_i) - \tau)}}$$

au : learnable threshold for the thickness edge

► Core Idea 1: Thickness-Awareness

(a) Below the threshold τ

(b) Above the threshold τ

► Core Idea 2: E(3)-Equivariance

► Core Idea 2: E(3)-Equivariance

► Core Idea 2: E(3)-Equivariance

Our proposed data-driven coordinate system is invariant to E(3) transformations, which include rotations, translations, and reflections.

► Core Idea 2: E(3)-Equivariance

Our proposed data-driven coordinate system is invariant to E(3) transformations, which include rotations, translations, and reflections.

► Overall Architecture

Overall Architecture

Step 1. Translate the original coordinates relative to the center of mass \mathbf{x}_{cm}

$$\mathbf{ ilde{x}}_i = \mathbf{x}_i^{ ext{orig}} - \mathbf{x}_{ ext{cm}}$$

- **Step 2.** The adjusted coordinates are **rotated** to align with the data-driven principal axes. $\mathbf{x}_i^{ ext{inv}} = \mathbf{R}^{ op} \mathbf{ ilde{x}}_i$
- * For each shape, the center of mass (x_{cm}) and the rotation matrix (R) are stored for the inverse transformation.

Overall Architecture

- Geometric Encoder: $\mathbf{z}_i^{(0)} = \phi_{ ext{node}}(\mathbf{f}_i), \quad \mathbf{e}_{ij}^{(0)} = \phi_{ ext{edge}}(\mathbf{f}_{ij})$
- Spatial Encoder: $\mathbf{z}_i^{ ext{coord}} = \phi_{ ext{coord}}(\mathbf{x}_i^{ ext{inv}})$

Overall Architecture

Surface Encoder:

$$\mathbf{e}_{ij}^{(l+1)} \leftarrow f_{\text{surf}}^M(\mathbf{e}_{ij}^{(l)}, \mathbf{z}_i^{(l)}, \mathbf{z}_j^{(l)}),$$

$$\mathbf{z}_{i}^{\text{surf},(l)} \leftarrow f_{\text{surf}}^{V}(\mathbf{z}_{i}^{(l)}, \sum_{j \in \mathcal{N}(i)} \mathbf{e}_{ij}^{(l+1)})$$

Thickness Processor:

$$I_{i} = \frac{1}{1 + e^{\alpha(t(v_{i}) - \tau)}} \qquad \mathbf{e}_{i, \text{thick}}^{(0)} \leftarrow \phi_{\text{thick}}(\mathbf{f}_{i, \text{thick}}) \qquad \mathbf{f}_{i, \text{thick}} = [t(v_{i}), \mathbf{n}_{i} \cdot \mathbf{n}_{i\tau}]$$

$$\mathbf{e}_{i, \text{thick}}^{(l+1)} \leftarrow I_{i} \cdot f_{\text{thick}}^{M}(\mathbf{e}_{i, \text{thick}}^{(l)}, \mathbf{z}_{i}^{\text{surf}, (l)}, \mathbf{z}_{\mathcal{T}(v_{i})}^{\text{surf}, (l)})$$

$$\mathbf{z}_{i}^{(l+1)} \leftarrow f_{\text{thick}}^{V}(\mathbf{z}_{i}^{\text{surf}, (l)}, \mathbf{e}_{i, \text{thick}}^{(l+1)})$$

Overall Architecture

• Decoder:
$$\mathbf{z}_i^{\text{final}} = \phi_{\text{combine}}([\mathbf{z}_i, \mathbf{z}_i^{\text{coord}}])$$

$$\mathbf{p}_i^{\text{inv}} = \phi_{\text{decode}}([\mathbf{z}_i^{\text{final}}, \mathbf{h}_c])$$

Overall Architecture

• Inverse Transform: $\mathbf{p}_i^{ ext{orig}} = \mathbf{R} \cdot \mathbf{p}_i^{ ext{inv}} + \mathbf{x}_{ ext{cm}}$

EXPERIMENTAL SETUP

Dataset: Real-world injection molding dataset (basket)

- 28 unique geometries, each with 18 experimental conditions
 - Test set
 - Unseen geometries + Seen 18 experimental conditions
 - Seen geometries + Unseen experimental conditions
 - Out-of-distribution test set: randomly rotated geometries
- Target: Node-level deflection (3-dimensions prediction for each node)

► Result 1: Quantitative Analysis

Model	Equivariance	Spatial	Thickness	Input of	Edge Feature	Node Feature	In Distribution (Original)			Out of Distribution (Rotated)		
	4	information	edges	$\phi{ m coord}$	\mathbf{f}_{ij}	\mathbf{f}_{i}	RMSE (\downarrow)	$\mathbf{MAE} \left(\downarrow \right)$	$\mathbf{R}^2 \left(\uparrow \right)$	RMSE (\downarrow)	$\mathbf{MAE}\left(\downarrow\right)$	$\mathbf{R}^{2}\left(\uparrow\right)$
(a) MLP	×	✓	×	-	-	$\mathbf{x}^{ ext{orig}}$	0.2818 (0.0061)	0.1164 (0.0035)	0.8984 (0.0029)	0.4789 (0.0181)	0.1939 (0.0070)	0.7393 (0.0248)
(b) MLP	✓	\checkmark	×	-	-	$\mathbf{x}^{ ext{inv}}$	0.2546 (0.0015)	0.1043 (0.0008)	0.9154 (0.0016)	0.2545 (0.0015)	0.1071 (0.0007)	0.9385 (0.0009)
(c) MGN	×	×	×	-	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	\mathbf{n}_i, g_i, r_i	1.2608 (0.0107)	0.5607 (0.0041)	0.0782 (0.0315)	1.3188 (0.0164)	0.6199 (0.0064)	-0.0903 (0.0315)
(d) MGN	×	\checkmark	×	$\mathbf{x}^{\mathrm{orig}}$	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	\mathbf{n}_i, g_i, r_i	0.2854 (0.0046)	0.1176 (0.0017)	0.8724 (0.0037)	0.4514 (0.0190)	0.1938 (0.0067)	0.7917 (0.0180)
(e) MGN	\checkmark	\checkmark	×	$\mathbf{x}^{ ext{inv}}$	$\mathbf{x}_{ij}, \ \mathbf{x}_{ij}\ $	\mathbf{n}_i, g_i, r_i	0.2241 (0.0042)	0.0938 (0.0029)	0.9113 (0.0099)	0.2241 (0.0042)	0.0965 (0.0024)	0.9446 (0.0033)
(f) EGNN	✓	×	×	-	$\ \mathbf{x}_{ij}\ $	g_i, r_i	153.051 (4.2992)	54.363 (2.1000)	-14341.0 (1214.1)	196.343 (1.6422)	89.049 (1.2804)	-32260.9 (1039.3)
(g) EGNN	×	\checkmark	×	$\mathbf{x}^{\mathrm{orig}}$	$\ \mathbf{x}_{ij}\ $	g_i, r_i	0.2944 (0.0045)	0.1220 (0.0021)	0.8680 (0.0056)	0.4576 (0.0184)	0.1958 (0.0064)	0.8074 (0.0206)
(h) EGNN	✓	\checkmark	×	$\mathbf{x}^{ ext{inv}}$	$\ \mathbf{x}_{ij}\ $	g_i, r_i	0.2270 (0.0019)	0.0963 (0.0008)	0.9129 (0.0026)	0.2271 (0.0019)	0.0987 (0.0009)	0.9443 (0.0012)
(i) EMNN	✓	×	×	-	$\ \mathbf{x}_{ij}\ $	g_i, r_i	166.077 (1.5226)	58.467 (2.0000)	-16034.0 (975.8)	201.450 (1.7433)	92.237 (1.3366)	-34302.7 (644.62)
(j) EMNN	×	\checkmark	×	$\mathbf{x}^{\mathrm{orig}}$	$\ \mathbf{x}_{ij}\ $	g_i, r_i	0.3056 (0.0246)	0.1284 (0.0131)	0.8626 (0.0052)	0.4668 (0.0180)	0.2024 (0.0092)	0.7972 (0.0097)
(k) EMNN	✓	\checkmark	×	$\mathbf{x}^{ ext{inv}}$	$\ \mathbf{x}_{ij}\ $	g_i, r_i	0.2210 (0.0057)	0.0937 (0.0034)	0.9149 (0.0034)	0.2210 (0.0057)	0.0963 (0.0052)	0.9473 (0.0012)
(l) T-EMNN	✓	✓	✓	$\mathbf{x}^{ ext{inv}}$	$\ \mathbf{x}_{ij}\ $	g_i, r_i	0.2132 (0.0046)	0.0892 (0.0025)	0.9228 (0.0063)	0.2131 (0.0046)	0.0918 (0.0023)	0.9513 (0.0031)

T-EMNN outperformed the other baselines thanks to two key components: **our thickness address** and our **data-driven coordinate** system, which conferred equivariance on both our method and the baselines in OOD settings.

► Result 2: Thickness Framework Validation

The learnable thickness threshold converges to a specific value, which enables interaction between highly correlated nodes on opposing surfaces.

► Result 2: Thickness Framework Validation

The learned thickness threshold (i.e., 5.68) outperforms the use of manually set, fixed threshold values (e.g., 0, 5, 10, 15, 20).

► Result 2: Thickness Framework Validation

The learned thickness threshold (i.e., 5.68) effectively **filters out noisy thickness edges** that can be seen as width rather than thickness.

► Result 2: Thickness Framework Validation

Applying the filtered thickness edges to the baselines improves their performance.

► Result 3: Qualitative Analysis

Using thickness edges reduces the overall error by allowing messages to pass more effectively between opposing surfaces.

► Result 3: Qualitative Analysis

CONCLUSIONS

Thickness-aware E(3)-Equivariant 3D Mesh Neural Network

Paper: https://arxiv.org/abs/2505.21572

Email: swkim@kaist.ac.kr

