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WHY 3D SIMULATION MATTERS
‣ The role of static analysis in manufacturing

https://onecadvn.com/en/solutions/3d-design

Analysis & Simulation: Identify potential product risks under real-world conditions before moving into production.
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WHY 3D SIMULATION MATTERS
‣ The role of static analysis in manufacturing

Whalen, Eamon, Azariah Beyene, and Caitlin Mueller. "SimJEB: simulated jet engine bracket dataset." Computer Graphics Forum. Vol. 40. No. 5. 2021.



4

Prediction

Ground Truth

Error

X deflection Y deflection Z deflection Conditions
• Temperature
• Pressure
• Injected position
• Viscosity
• Conductivity
• Cooling time
• Injection time
• …

WHY 3D SIMULATION MATTERS
‣ The role of static analysis in manufacturing
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3D simulation is the key to building better products, faster and cheaper.
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WHY 3D SIMULATION MATTERS
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CHALLENGE: CONVENTIONAL SOLVERS
‣ Finite Element Method (FEM): High Computational Cost

Performing a single FEM analysis involves high computational costs and extended runtimes.
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CHALLENGE: CONVENTIONAL SOLVERS
‣ Finite Element Method (FEM): High Computational Cost

Learning-based AI models can serve as powerful surrogates, 
significantly reducing the high computational cost of FEM simulations.
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TASK
‣ Node-level deflection (3d) prediction

PredictionConditions

X deflection

Y deflection

Z deflection
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3D REPRESENTATION
‣ 3D Mesh: Vertices, Edges, and Faces

Face

3D Mesh is one the best way to describe surfaces and volumes of object!
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3D REPRESENTATION
‣ 3D Mesh: Volume mesh vs. Surface mesh

Volume mesh Surface mesh
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3D REPRESENTATION
‣ 3D Mesh: Volume mesh vs. Surface mesh

Surface meshes are significantly faster, more cost-effective, 
and better suited for modeling the geometric properties of a shape.
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PROBLEM WITH SURFACE MESH
‣ Ignoring Critical Thickness Information
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PROBLEM WITH SURFACE MESH
‣ Ignoring Critical Thickness Information

Surface meshes face challenges in modeling the interactions between thickness pair due to the lack of 
connections between opposing surfaces within the mesh
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OUR MOTIVATION
‣ Bringing the gap between surface mesh efficiency and physical accuracy

+

Surface mesh Thickness interaction

We achieve accurate and efficient 3D analysis by modeling 
thickness interactions directly on the surface mesh.
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PROPOSED METHOD
‣ Core Idea 1: Thickness-Awareness

: Thickness edges: Thickness pair nodes

We introduce a 'thickness edge' to connect a node with its corresponding 
'thickness paired node' on the opposing surface.
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PROPOSED METHOD
‣ Core Idea 1: Thickness-Awareness

• Definition of a ‘thickness paired node’

𝐱 : coordinate,  𝐧!"#$ : normal vector

• Definition of a ‘thickness’
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PROPOSED METHOD
‣ Core Idea 1: Thickness-Awareness

Opposing nodes do not always define true 'thickness’.
They can also represent 'width', which has a weaker dynamic relationship.
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PROPOSED METHOD
‣ Core Idea 1: Thickness-Awareness

𝜏 : learnable threshold for the thickness edge
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PROPOSED METHOD
‣ Core Idea 1: Thickness-Awareness
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PROPOSED METHOD
‣ Core Idea 2: E(3)-Equivariance

Chen, Yunlu, et al. "3d equivariant graph implicit functions." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.
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PROPOSED METHOD
‣ Core Idea 2: E(3)-Equivariance

Chen, Yunlu, et al. "3d equivariant graph implicit functions." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022.

𝜙 ≠ 𝜙(𝑇% ) 𝜙: Coordinate encoder
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PROPOSED METHOD
‣ Core Idea 2: E(3)-Equivariance

Our proposed data-driven coordinate system is invariant to E(3) transformations, 
which include rotations, translations, and reflections.
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PROPOSED METHOD
‣ Core Idea 2: E(3)-Equivariance

Our proposed data-driven coordinate system is invariant to E(3) transformations, 
which include rotations, translations, and reflections.
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PROPOSED METHOD
‣ Overall Architecture
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PROPOSED METHOD
‣ Overall Architecture

Step 1. Translate the original coordinates relative to the center of mass 𝐱&'

Step 2. The adjusted coordinates are rotated to align with the data-driven principal axes.

* For each shape, the center of mass (𝐱&') and the rotation matrix (𝐑) are stored for the inverse transformation.
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PROPOSED METHOD
‣ Overall Architecture

• Geometric Encoder:

• Spatial Encoder:
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PROPOSED METHOD
‣ Overall Architecture

• Surface Encoder:

• Thickness Processor:
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PROPOSED METHOD
‣ Overall Architecture

• Decoder:
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PROPOSED METHOD
‣ Overall Architecture

• Inverse Transform:
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EXPERIMENTAL SETUP
‣ Dataset: Real-world injection molding dataset (basket)

• 28 unique geometries, each with 18 experimental conditions
• Test set

• Unseen geometries + Seen 18 experimental conditions
• Seen geometries + Unseen experimental conditions

• Out-of-distribution test set: randomly rotated geometries
• Target: Node-level deflection (3-dimensions prediction for each node)



31

EXPERIMENTS
‣ Result 1: Quantitative Analysis

T-EMNNoutperformed the other baselines thanks to two key components: our thickness addressand our data-driven coordinate 
system, which conferred equivariance on both our method and the baselines in OOD settings.
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EXPERIMENTS
‣ Result 2: Thickness Framework Validation

The learnable thickness threshold converges to a specific value, which enables interaction between highly 
correlated nodes on opposing surfaces.
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EXPERIMENTS
‣ Result 2: Thickness Framework Validation

The learned thickness threshold (i.e., 5.68) outperforms the use of manually set, fixed threshold values 
(e.g., 0, 5, 10, 15, 20).
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EXPERIMENTS
‣ Result 2: Thickness Framework Validation

The learned thickness threshold (i.e., 5.68) effectively filters out noisy thickness edges that can be seen 
as width rather than thickness.

Below the threshold 𝜏 Above the threshold 𝜏
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EXPERIMENTS
‣ Result 2: Thickness Framework Validation

Applying the filtered thickness edges to the baselines improves their performance.
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EXPERIMENTS
‣ Result 3: Qualitative Analysis

Using thickness edges reduces the overall error by allowing messages to pass more effectively 
between opposing surfaces.
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EXPERIMENTS
‣ Result 3: Qualitative Analysis
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CONCLUSIONS
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