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Background: LLM Pruning Challenge

Large Language Models

Billions of parameters (e.g., LLaMA, Mistral, Qwen2)

Exceptional capabilities across diverse tasks

Significant hardware constraints for deployment

Pruning Solutions

Removes redundant weights to reduce model size

One-shot post-training pruning: Efficient 
approach without fine-tuning

Can achieve 50%+ sparsity with 
minimal performance loss

Supported by hardware acceleration 
(e.g., 2:4 sparse tensor cores)

Model Compression Challenge

High Memory

40+ GB

High Compute

175B+ params

Slow Inference

Limited throughput



Limitations of Current Pruning Methods

Current Pruning Metrics: Simple Symbolic Combinations

Magnitude

|Wij|

Wanda

|Wij| · ||Xj||2

GBLM-Pruner

|Wij| · ||Xj||2 · |Gij|

These methods overlook critical distribution characteristics in weights and activations



Key Observations: Why Current Methods Fail

Imbalanced Weight Magnitude

Distribution

Weight magnitudes vary significantly across channels

Certain channels contain abnormally large or small

weights

Leads to biased pruning decisions where entire

channels are either preserved or pruned

Weight magnitude varies significantly across different channels

Disproportionate Impact of

Outliers

Less than 1% of activation outliers can inflate

channel's norm by up to 5×

Channels with outliers are erroneously prioritized

during pruning

Channels without outliers are excessively pruned,

degrading performance

A few outliers dramatically increase channel norm values

Key insight: Current pruning metrics use simple symbolic combinations of weights and activations, ignoring these

imbalances. This leads to sub-optimal pruning decisions and significant performance degradation.



Introducing BaWA

BaWA (Balanced Weight and Activation) is a novel pruning metric that systematically 
balances the contributions of  weight and activation distributions for more effective 
LLM pruning, addressing the limitations of existing methods

BaWA Pruning Process

Imbalanced Distribution Magnitude Normalization Outlier Regularization Automatic Optimization

Magnitude

Normalization

Normalizes weight magnitudes across

both input and output channels to

address imbalanced weight

distributions, contributing to fairer

pruning decisions.

Outlier Regularization

Introduces learnable power factors to

reduce the impact of activation

outliers, preventing their

disproportionate influence on pruning

decisions.

Automatic Optimization

Employs zeroth-order gradient

optimization to efficiently search for

optimal hyperparameters, enabling

better pruning masks with minimal

computational overhead.



Magnitude Normalization

The Problem

Weight magnitudes exhibit significant imbalance across

channels

Some channels contain weights that are abnormally

large or small

This leads to biased pruning where weights in certain

channels are predominantly preserved or removed

BaWA's Solution

Input Channel Normalization

Normalizes weight magnitude by the ℓ2-norm of each

input channel

S = |W | · (1/||W || ) · ||X ||

Output Channel Normalization

Normalizes by the ℓ2-norm of each output channel

S = (1/||W || ) · |W | · ||X ||
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Benefits of Magnitude Normalization

More balanced

distribution

Fairer pruning

decisions

Improved model

performance

Optimal sparsity

patterns



Outlier Regularization

The Outlier Problem

Few activation outliers (<1%) can inflate a

channel's norm by over 5×

Channels without outliers are unfairly pruned

Up to 10% of channels eliminated in specific layers

Existing metrics over-emphasize outlier channels

BaWA's Solution

Introduce power factor θ to control outlier influence

Lower θ values reduce impact of activation outliers

Learnable parameters optimize regularization

strength

Ensures fair evaluation of each weight's importance



Automatic Hyperparameter Optimization

Optimization Process

Initialize

Parameters

Estimate

Gradients

Update

Parameters

Block-wise optimization reduces search complexity

Uses calibration dataset (128 segments from C4)

Optimization Efficiency



Experimental Results: Perplexity

WikiText-2 perplexity performance of BaWA and Wanda for different LLMs at varying sparsity rates.

Key Improvements

LLaMA2-70B (4:8): 0.15 perplexity reduction vs. Wanda

LLaMA-7B (60%): 0.57 perplexity reduction vs. Wanda

LLaMA-13B (70%): 18.11 perplexity reduction vs. Wanda

Qwen2-72B (80%): 8.61 perplexity reduction vs. Wanda

BaWA consistently outperforms all baseline methods 
across various models and sparsity levels



Experimental Results: Zero-Shot Tasks

Consistent Improvement

BaWA outperforms Wanda by up to 3.08%

on average accuracy across tasks

Superior Performance

For Mistral-7B with 2:4 sparsity, BaWA

shows 53.23% accuracy vs. Wanda's

50.15%

Model Adaptability

For LLaMA2-70B, the pruned model with

50% sparsity achieves higher accuracy

than the original dense model



Experimental Results: Analysis

Ablation Study demonstrates the effectiveness of each method proposed by BaWA



Conclusion and Impact

Key Contributions

Balanced Pruning Metric

Addresses imbalanced weight magnitudes and

disproportionate influence of activation outliers

Superior Performance

For Mistral-7B with 2:4 sparsity: reduced perplexity by 2.49

and improved downstream task accuracy by 3.08%

Efficient Implementation

Complete optimization in ~16 minutes for LLaMA2-70B on a

single GPU, with minimal performance overhead

Impact & Significance

Consistently outperforms existing SOTA pruning methods

across various LLMs and language benchmarks

Compatible with existing weight reconstruction methods

(e.g., ADMM-Iter), offering further performance gains

Enables effective deployment of LLMs in resource-

constrained environments

Orthogonal to conventional weight adjustment methods,

creating opportunities for combined approaches

Performance Highlights

1.58×
Speedup over dense

FP16 GEMM

3.08%
Improved accuracy

on downstream tasks

50%+
Effective at high

sparsity levels

Thank you for your attention!

Questions?


