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Take Away:

= Our goal: Protect private attributes while preserving the utility of the
data for downstream tasks in data sharing or ML pipelines.

= Problem: We show that existing adversarial training based
methods are vulnerable to slightly stronger or unseen attackers.

= Solution: We propose PASS, a stochastic data substitution based
method that overcomes this common problem.
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(D Can I share my selfie...without sharing my color?

| like

sharing
selfies!

But | don’t want
others to know
I’m orange...

Is there
a safe way?

(2) Disquises can be seen
through by a smarter fox

(3) Stochastic data
substitution works!
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Motivation:
= .
Our goal ] Attributes of Original Probability of  Attributes Inferred From
Original Sample Sample Substitution Substituted Sample
 Privater A - Private: |
| Sex: Female | | Sex: 272 |
| | | |
L _ o N
 Useful: | om PASS  Useful: h
| Eyeglasses: Yes | Q} q> | Eyeglasses: Yes |
| Smiling: Yes | | = & | Smiling: Yes !
. T y 7 _ N
" General Features: | " General Features: |
Black hair: (No) Black hair: (No)
Young: (Yes) | Young: (Yes)
. _J . S _J

= SOTA methods: obfuscate the data based on adversarial training,
where they train the data obfuscation model to confuse an
adversarial classifier jointly trained to infer each private attribute.

= Problem: These methods are vulnerable...
= X Theoretically, from an information theory perspective.

= ¥ Empirically, to a simple attacking strategy called the Probing
Attack, where the attacker applies the (black-box) obfuscation
algorithm to a public dataset with labeled private attributes, and
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Check out our paper [m]_
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" Approach: )
= Information-theoretic formulation of our goal:
M N
pmin L= > [(X"S;) — A; [(X":U;) — pul(X'; X) .
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= PASS: stochastically substitute each sample with arjother one
according to cosine similarity in an embedding space. 4

o . (Approximate!  (Information-
‘ - Stochastic Data Substitution | Loss | theoretic |
‘ '} | " Function L | | Objective L |
£ P — N — - — — —
2 & ( .
* Fmbeddin : B | Derive | | Private |
Original Sample x ——» & ™ Ls — I(X;S) | AttributesS;
| f(x) } | | | | | Protection
Substitution Probability _L A=+ : 4 —
| Po(X'=x"| X=x) | | | Derive | | U_SGful |
‘ T f s Ly — IX; U) | I1t’\tt1~1l'.)ute§ Ui |
~ Substitute Samples x" —— mg?x’) - 1 L Jt - T|L _____ :_ reservation
A== S E
| : | | | Derive | | General |
, o Ly < — IX; X) | Features |
'3 & | | | | Preservation
- - = _J LL_____J____L_____J ______ J

= Theoretical Grounds:

. PASS’s training objective is derived soundly from the
information-theoretic definition of our goal.

. PASS can also be interpreted within Differential Privacy
framework, as a generalized randomized response method.

. PASS has information-theoretic operational boundary when

\ then uses the resulting obfuscated samples to train a new classifier.
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Experiments:
= Qutperforms baselines on CelebA, AudioMNIST and MotionSense.
Private Useful Results on CelebA "Hidden" Useful
| P e mmm=E
Method v A NAG(%) o m ==~ " y mNAG (%) (1)
Male (|) Smiling (1) Young (1) Attractive (1) Mouth _Slightly Open (1) High_Cheekbones (7)
ADV  99.9+40.1 98.840.1 97.0£09  94.6+0.4 99.140.1 97.040.5 -2.6:0.2
GAP  83.0+l1.1 759413 454430  77.6+1.1 61.142.1 75.640.7 -15.9+2.3
MSDA  91.6+0.7 99.8402 924424  89.9+1.0 91.8+0.8 95.741.1 2.3+0.8
BDQ  99.740.1 988402 963+08  94.1+0.6 98.9+0.4 97.040.3 -2.740.2
PPDAR 99.740.1 989403 972412  94.4+0.6 99.040.1 97.040.4 -2.4+0.3
MaSS  96.9+0.1 972402 862+14  90.6+0.3 97.6:+0.2 94.64-0.4 -3.740.4
PASS  4.9+05  98340.1 78.6+08  58.1+28 67.0+0.8 86.7-0.3 72.940.2
NAG (Normalized Accuracy Gain): NAG=0 -> "fully protected”, NAG=1 -> "not protected".
MNAG: NAG averaged over useful attributes - NAG averaged over private attributes.
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