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TL;DR:We offer a theoretical basis for low-rank compression from the perspective of universal

approximation theory by proving any Hölder function can be approximated by a Swish network

with low-rank weight matrices.

Motivation

Low-rank compression is a class of efficient and hardware-friendly neural network compression

techniques that approximate weight matrices through matrix factorization. However, the univer-

sal effectiveness of low-rank compression in preserving model performance is not guaranteed

theoretically.

In this paper, we partially explain this universal effectiveness by showing that for any ε > 0 and
f ∈ Cβ,R([0, 1]d) there exists a low-rank network nn such that supx∈[0,1]d |nn(x) − f (x)| ≤ ε. This

approximation result indicates that for a vast range of tasks there exists a good low-rank network

solution, though it is not clear to us whether such a solution can be obtained by a specific low-

rank compression algorithm.

Such an approximation rate can also be a key ingredient to derive consistency and convergence

rate of low-rank network estimation.

Low-Rank Networks

(b) a low-rank network

(a) a classical feedforward network

Figure 1. “4” stands for input neuron, “©” nonlinear neuron (i.e. neuron with activation function), and “�” linear
neuron (i.e. neuron without activation function).

Hölder Functions

Let d ∈ N+,X ∈ Rd, and R, β ∈ R+. There exist κ ∈ N and 0 < γ ≤ 1 such that β = κ+ γ. For a
function f : X → R, its Hölder norm is defined by

‖f‖Cβ := max
{

sup
|α|≤κ

‖∂αf‖∞, sup
|α|=κ

sup
x 6=y

|∂αf (x) − ∂αf (y)|
‖x − y‖γ∞

}
(1)

The Hölder space Cβ([0, 1]d) is defined as the set{
f : X → R

∣∣ ‖f‖Cβ < ∞
}

(2)

equipped with Hölder norm ‖ · ‖Cβ . And the Hölder ball C
β,R([0, 1]d) is defined by{

f : X → R
∣∣ ‖f‖Cβ ≤ R

}
. (3)

Approximation Theorem

Let β ∈ R+, β = κ + γ, κ ∈ N, γ ∈ (0, 1], and R ∈ R+. For all f ∈ Cβ,R([0, 1]d), M ∈ N+, λ ≥ 2−1
3 ,

and τ ≥ 1, there exists a low-rank Swish network nn : [0, 1]d → R with depth

max
{⌈κ

2

⌉
, dlog2 de + 1

}
+ 1, (4)

width of nonlinear layers

2
(
d + 1
d− 1

)
+ 4

(
d + κ− 2
d− 1

)
+ 4

(
d + κ− 1
d− 1

)
+ 6(M + 1)d, (5)

width of linear hidden layers(
d + 1
d− 1

)
+
(
d + κ− 3
d− 1

)
+
(
d + κ− 2
d− 1

)
+ 2(M + 1)d, (6)

upper bound of absolute values of parameters

max

(3M + 2)τ, 2λ2 max
|α|≤κ


∑
ν≥α
|ν|≤κ

R

ν!

d∏
i=1

(
νi
αi

) , 2λ2

 , (7)

and upper bound of number of nonzero parameters

c1 + c2(M + 1)d (8)

such that
|nn(x) − f (x)|

≤ c3
(M + 1)d

λ2 + c4M
−β + c5(M + 1)dτe−τ (9)

for all x ∈ [0, 1]d, where c1, c2, c3, c4, and c5 are positive constants depending only on d, κ, and R.

Low-Rank Compression

When β > 2 (i.e. κ ≥ 2), the width of linear hidden layers is always no more than one-third of the
width of nonlinear layers, since

3
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)
+
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)
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)
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d− 1

)
+ 4
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d + κ− 1
d− 1
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⇐
(
d + 1
d− 1

)
≤

(
d + κ− 2
d− 1

)
+
(
d + κ− 1
d− 1

)
⇐

(
d + 1
d− 1

)
≤

(
d

d− 1

)
+
(
d + 1
d− 1

)
.

(10)

Proof Ideas

1. approximating any Hölder function f by a sum–product combination of Taylor polynomials
(Pκm)m∈[M ]d and approximate bump functions (φτm)m∈[M ]d, where

Pκm(x) :=
∑

|α|≤κ
∂αf (m/M)

α!
(
x − m

M

)α
and φτm(x) :=

∏d
i=1ψ

τ
(
3M

(
xi − mi

M

))
2. approximating (Pκm)m∈[M ]d by a low-rank Swish network P
3. approximating (φτm)m∈[M ]d by a low-rank Swish network G
4. approximating

∑
m∈[M ]d P

κ
mφτm by the inner product of P and G

Here, M ∈ N+, [M ] := {0, 1, 2, . . . ,M}, ρ is the activation function and ψτ (x) := 1
τ (ρ(τ (x + 2)) −

ρ(τ (x + 1)) − ρ(τ (x− 1)) + ρ(τ (x− 2))).

Curse of Dimensionality
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Figure 2. An illustration of a hierarchical composite function. x1, x2, x3, and x4 are input variables. h1 = h1(x1, x2),
h2 = h2(x1, x3), h3 = h3(x4), h4 = h4(h1, h3), h5 = h5(h2, h3), and y = y(h4, h5). Though the input dimension of the
hierarchical composite function is 4, the input dimensions of its component functions do not exceed 2.

The curse of dimensionality refers to the phenomenon that as the input dimension d goes to
infinity, the network size required to achieve a given approximation error grows fast or the ap-

proximation error grows fast when the network size is fixed.

Here we briefly introduce a class of high-dimensional functions, called hierarchical composite

functions, which are universal in reality and can be approximated without being affected by the

curse of dimensionality(Schmidt-Hieber, 2020; Kohler & Langer, 2021).

It is obvious that the network size required to approximate a hierarchical composite function is

directly related to the input dimension of each component function and has no direct relation to

the input dimension of the hierarchical composite function, because we can construct networks

to approximate component functions respectively, then combine them into one network.

Experimental Validation

Table 1. Cross-validation results for classical feedforward networks and low-rank networks on various classification

(top) and regression (bottom) datasets. L represents the depth (i.e. the number of nonlinear layers) of both
networks and H represents the width of nonlinear layers of both networks.

DATASET L H ACC(%)
t-statistic

classical low-rank

Iris 4 20 95.3 ± 4.3 94.7 ± 5.0 0.36
Rice 2 35 92.7 ± 1.9 92.6 ± 2.0 1.00
BankMarketing 2 188 68.9 ± 15.3 71.1 ± 15.4 −2.01
Adult 2 540 85.8 ± 0.3 85.8 ± 0.3 −0.47

DATASET L H RMSE
t-statistic

classical low-rank

RealEstate 4 30 .078 ± .021 .077 ± .020 1.29
Abalone 3 50 .077 ± .022 .077 ± .022 −0.44
WineQuality 4 78 .123 ± .009 .123 ± .009 1.21
BikeSharing 4 60 .100 ± .036 .070 ± .024 3.90


