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Demo: GuidedQuant

Llama-3.3-70B-Instruct (2-bit quantized)

Input: Write me a short and concise story about Harry, Ron, and Hermione.

SqueezelLLM

Harry, Ron, and Hermione were the best of
friends.

They had been friends since they were kids,
and their friendship had been strong since
then.

They had been through a lot together, and
their bond had grown even stronger.

They had been through a lot, and

they had been through a lot of things, and
they had been through a lot of things.
They had been through a lot, and

they had been through a lot of things, and
they had been through a lot of things.
They had been through a lot, and

they had been through a lot of things, and
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GuidedQuant + LNQ (Ours)

As the sun set over the Hogwarts grounds,
Harry, Ron, and Hermione sat together on
the grass, watching the stars twinkle to
life.

They had just finished a long day of
classes, and were now unwinding.

Ron began to tell them about his latest
Quidditch match, and they all shared a
laugh.

The three of them had been friends since
their first year and had always been
there to support each other.

Now, as they sat together, they each knew
that they would always be there for one

another.




Problem: Post-training Quantization for LLMs

There are two dominant PTQ approaches for LLM quantization:

> Layer-wise Output-based Quantization: Minimize the mean-squared error
between each layer's original and quantized outputs.
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Problem: Post-training Quantization for LLMs

There are two dominant PTQ approaches for LLM quantization:

> Layer-wise Output-based Quantization: Minimize the mean-squared error
between each layer's original and quantized outputs.
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> Diagonal Fisher Information Matrix (FIM): Weigh the individual weight
errors by gradients of the end loss.
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Problem: Post-training Quantization for LLMs

» Layer-wise Qutput-based Quantization: Minimize the mean-squared error
between each layer's original and quantized outputs.
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— Treats all hidden features equally, ignoring how much each feature
contributes to the end loss.



Problem: Post-training Quantization for LLMs

> Diagonal Fisher Information Matrix (FIM): Weigh the individual weight
errors by gradients of the end loss.

w—w) F(Ww—w) (2nd order Taylor expansion)

~ (W —w) ' diag(F)(w — w) (Diagonal Approximation)
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— Approximates FIM with only its diagonal, discarding cross-weight
interactions, which are crucial.



GuidedQuant: Objective

GuidedQuant bridges these gaps by integrating end loss gradients into the
quantization objective while preserving intra-channel dependencies.
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GuidedQuant: Objective

GuidedQuant bridges these gaps by integrating end loss gradients into the
quantization objective while preserving intra-channel dependencies.

L d®
‘€ out N R
oot eoxtw® - xOW0)|” = 0353w )Tl )
=1 j5=1

This objective corresponds to block-diagonal FIM approximation, and is a more
accurate approximation than

— Layer-wise output error objective which assumes % x L
— Diagonal FIM objective which ignores off-diagonal entries.



GuidedQuant: Averaging Approximation

» However, Hg-l) =FV depends on each output channel j € {1,... a

J » Yout S 1
making it infeasible to compute and store.

» Solution: Group doy: channels into g << doy: clusters (Jq,...,Jy), and average
Fisher blocks within each group.
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GuidedQuant: Results

GuidedQuant can be plugged into any layer-wise PTQ backend.

Method Bits] Wiki2-4K|
Type Original 16 5.12
wWeightanly 1y o man
LNQ + GQuant (Ours) 2.01 8.83
Weight-only QTIP 2.00 6.82
Vector QTIP + GQuant (Ours) 2.00 6.11
Method Bits| Wiki2-2K|
Type Original 16 5.47
Weight-and-  SpinQuant W4A4KV4 5.95

Activation  SpinQuant + GQuant (Ours) W4A4KV4 5.89

— Improves state-of-the-art methods for weight-only scalar, weight-only vector,
and weight-and-activation quantization.



LNQ: Problem Formulation

Regarding weight-only scalar quantization, we further propose non-uniform
quantization method LNQ (Layer-wise Non-uniform Quantization).

The optimization problem involves discrete assignment PU) € {0, 1}%»*™ and
continuous codebook c¢() € R™:
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subject to  PW1, =14,
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LNQ: Algorithm

LNQ is a non-uniform scalar quantization method that alternates closed-form
codebook update and coordinate-descent assignment update.

repeat:
, ) N
) (P(J)TXTXP(J)> PUTX " Xw; (codebook)

for i =1 to di, do:

!(J]*)<_ argmin (/V‘?] —Wj)TXTX(Wj —W]‘)

Wiele, e}

C

.pi _ )1 ifg=q" ;
Vge[m]: P~ = { 0 otherwise. (assignment)

— Monotonically decreases the objective and guarantees convergence.



LNQ: Results

LNQ algorithm is fully compatible with GuidedQuant: Together, they achieve
state-of-the-art performance on weight-only scalar quantization.

- = = Original-FP16 =~ —@&— SqueezeLLM (weighted k-means)
—éo— LNQ (layer-wise) —&— LNQ + GuidedQuant (our objective)
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Conclusion

» GuidedQuant integrates end loss gradients into the layer-wise quantization
objective, outperforming PTQ methods.

> LNQ is a non-uniform scalar quantization method that alternates closed-form
codebook update and coordinate-descent assignment update.

Code: https://github.com/snu-mllab/GuidedQuant


https://github.com/snu-mllab/GuidedQuant

