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Demo: GuidedQuant



Problem: Post-training Quantization for LLMs

There are two dominant PTQ approaches for LLM quantization:

I Layer-wise Output-based Quantization: Minimize the mean-squared error
between each layer’s original and quantized outputs.
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I Diagonal Fisher Information Matrix (FIM): Weigh the individual weight
errors by gradients of the end loss.
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(ŵ −w)>diag(F)(ŵ −w) =
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→ Treats all hidden features equally, ignoring how much each feature
contributes to the end loss.



Problem: Post-training Quantization for LLMs

I Diagonal Fisher Information Matrix (FIM): Weigh the individual weight
errors by gradients of the end loss.

`(ŵ)− `(w) ≈ (ŵ −w)>F(ŵ −w) (2nd order Taylor expansion)
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→ Approximates FIM with only its diagonal, discarding cross-weight
interactions, which are crucial.



GuidedQuant: Objective

GuidedQuant bridges these gaps by integrating end loss gradients into the
quantization objective while preserving intra-channel dependencies.
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This objective corresponds to block-diagonal FIM approximation, and is a more
accurate approximation than

→ Layer-wise output error objective which assumes ∂`
∂Z(l) ∝ I.

→ Diagonal FIM objective which ignores off-diagonal entries.



GuidedQuant: Averaging Approximation

I However, H
(l)
j := F

(l)
j depends on each output channel j ∈ {1, . . . , d(l)out},

making it infeasible to compute and store.

I Solution: Group dout channels into g�dout clusters (J1, . . . , Jg), and average
Fisher blocks within each group.
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GuidedQuant: Results

GuidedQuant can be plugged into any layer-wise PTQ backend.

→ Improves state-of-the-art methods for weight-only scalar, weight-only vector,
and weight-and-activation quantization.



LNQ: Problem Formulation

Regarding weight-only scalar quantization, we further propose non-uniform
quantization method LNQ (Layer-wise Non-uniform Quantization).

The optimization problem involves discrete assignment P(j) ∈ {0, 1}din×m and
continuous codebook c(j) ∈ Rm:

minimize
P(j)∈{0,1}din×m

c(j)∈Rm
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LNQ: Algorithm

LNQ is a non-uniform scalar quantization method that alternates closed-form
codebook update and coordinate-descent assignment update.

→ Monotonically decreases the objective and guarantees convergence.



LNQ: Results

LNQ algorithm is fully compatible with GuidedQuant: Together, they achieve
state-of-the-art performance on weight-only scalar quantization.



Conclusion

I GuidedQuant integrates end loss gradients into the layer-wise quantization
objective, outperforming PTQ methods.

I LNQ is a non-uniform scalar quantization method that alternates closed-form
codebook update and coordinate-descent assignment update.

Code: https://github.com/snu-mllab/GuidedQuant

https://github.com/snu-mllab/GuidedQuant

