GuidedQuant: Large Language Model Quantization via Exploiting End-Loss Guidance

Jinuk $Kim^{1,2}$ Marwa El Halabi³ Wonyo $Park^4$ Clemens JS Schaefer⁴ Deokjae $Lee^{1,2}$ Yeonhong $Park^1$ Jae W. Lee^1 Hyun Oh $Song^{1,2}$

¹Seoul National University ²Neural Processing Research Center ³Samsung Al Lab, Montreal ⁴Google

ICML 2025

Demo: GuidedQuant

Llama-3.3-70B-Instruct (2-bit quantized)

Input: Write me a short and concise story about Harry, Ron, and Hermione.

SaueezeLLM

Harry, Ron, and Hermione were the best of friends.

They had been friends since they were kids. and their friendship had been strong since then

They had been through a lot together, and their bond had grown even stronger.

They had been through a lot, and

they had been through a lot of things, and

they had been through a lot of things.

They had been through a lot, and

they had been through a lot of things, and they had been through a lot of things.

They had been through a lot, and

they had been through a lot of things, and

GuidedOuant + LNO (Ours)

As the sun set over the Hogwarts grounds. Harry, Ron, and Hermione sat together on the grass, watching the stars twinkle to life.

They had just finished a long day of classes, and were now unwinding. Ron began to tell them about his latest Ouidditch match, and they all shared a laugh.

The three of them had been friends since their first year and had always been there to support each other.

Now, as they sat together, they each knew that they would always be there for one another.

There are two dominant PTQ approaches for LLM quantization:

► Layer-wise Output-based Quantization: Minimize the mean-squared error between each layer's original and quantized outputs.

$$\|\mathbf{X}^{(l)}\mathbf{W}^{(l)} - \mathbf{X}^{(l)}\widehat{\mathbf{W}}^{(l)}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^{d_{\text{out}}^{(l)}} \left(Z_{ij}^{(l)} - \widehat{Z}_{ij}^{(l)} \right)^2$$

There are two dominant PTQ approaches for LLM quantization:

► Layer-wise Output-based Quantization: Minimize the mean-squared error between each layer's original and quantized outputs.

$$\|\mathbf{X}^{(l)}\mathbf{W}^{(l)} - \mathbf{X}^{(l)}\widehat{\mathbf{W}}^{(l)}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^{d_{\text{out}}^{(l)}} \left(Z_{ij}^{(l)} - \widehat{Z}_{ij}^{(l)} \right)^2$$

▶ Diagonal Fisher Information Matrix (FIM): Weigh the individual weight errors by gradients of the end loss.

$$(\widehat{\mathbf{w}} - \mathbf{w})^{\top} \operatorname{diag}(\mathbf{F})(\widehat{\mathbf{w}} - \mathbf{w}) = \sum_{k} \left(\frac{\partial \ell}{\partial w_k}\right)^2 (\widehat{w}_k - w_k)^2$$

► Layer-wise Output-based Quantization: Minimize the mean-squared error between each layer's original and quantized outputs.

$$\|\mathbf{X}^{(l)}\mathbf{W}^{(l)} - \mathbf{X}^{(l)}\widehat{\mathbf{W}}^{(l)}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^{d_{\text{out}}^{(l)}} \left(Z_{ij}^{(l)} - \widehat{Z}_{ij}^{(l)} \right)^2$$

ightarrow Treats all hidden features equally, ignoring how much each feature contributes to the end loss.

▶ Diagonal Fisher Information Matrix (FIM): Weigh the individual weight errors by gradients of the end loss.

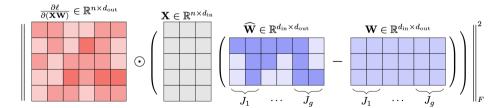
$$\begin{split} \ell(\widehat{\mathbf{w}}) - \ell(\mathbf{w}) &\approx (\widehat{\mathbf{w}} - \mathbf{w})^{\top} \mathbf{F}(\widehat{\mathbf{w}} - \mathbf{w}) \\ &\approx (\widehat{\mathbf{w}} - \mathbf{w})^{\top} \mathrm{diag}(\mathbf{F})(\widehat{\mathbf{w}} - \mathbf{w}) \\ &= \sum_{k} \left(\frac{\partial \ell}{\partial w_{k}}\right)^{2} (\widehat{w}_{k} - w_{k})^{2} \end{split} \tag{2nd order Taylor expansion)}$$

 \rightarrow Approximates FIM with only its diagonal, discarding cross-weight interactions, which are crucial.

GuidedQuant: Objective

GuidedQuant bridges these gaps by **integrating end loss gradients** into the quantization objective while **preserving intra-channel dependencies**.

$$\left\| \frac{\partial \ell}{\partial \mathbf{Z}^{(l)}} \odot (\mathbf{X}^{(l)} \mathbf{W}^{(l)} - \mathbf{X}^{(l)} \widehat{\mathbf{W}}^{(l)}) \right\|_F^2 = n \sum_{l=1}^L \sum_{j=1}^{d_{\text{out}}^{(l)}} (\mathbf{w}_j^{(l)} - \widehat{\mathbf{w}}_j^{(l)})^\top \mathbf{F}_j^{(l)} (\mathbf{w}_j^{(l)} - \widehat{\mathbf{w}}_j^{(l)}).$$



GuidedQuant: Objective

GuidedQuant bridges these gaps by **integrating end loss gradients** into the quantization objective while **preserving intra-channel dependencies**.

$$\left\| \frac{\partial \ell}{\partial \mathbf{Z}^{(l)}} \odot (\mathbf{X}^{(l)} \mathbf{W}^{(l)} - \mathbf{X}^{(l)} \widehat{\mathbf{W}}^{(l)}) \right\|_F^2 = n \sum_{l=1}^L \sum_{j=1}^{d_{\text{out}}^{(l)}} (\mathbf{w}_j^{(l)} - \widehat{\mathbf{w}}_j^{(l)})^\top \mathbf{F}_j^{(l)} (\mathbf{w}_j^{(l)} - \widehat{\mathbf{w}}_j^{(l)}).$$

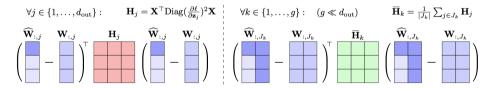
This objective corresponds to **block-diagonal FIM approximation**, and is a more accurate approximation than

- o Layer-wise output error objective which assumes $\frac{\partial \ell}{\partial \mathbf{Z}^{(l)}} \propto \mathbf{I}$.
- ightarrow **Diagonal FIM** objective which ignores off-diagonal entries.

GuidedQuant: Averaging Approximation

- ▶ However, $\mathbf{H}_j^{(l)} := \mathbf{F}_j^{(l)}$ depends on each output channel $j \in \{1, \dots, d_{\mathrm{out}}^{(l)}\}$, making it infeasible to compute and store.
- ▶ Solution: Group d_{out} channels into $g \ll d_{\text{out}}$ clusters (J_1, \ldots, J_g) , and average Fisher blocks within each group.

$$\overline{\mathbf{H}}_{k}^{(l)} = \frac{1}{|J_{k}|} \sum_{j \in J_{k}} \mathbf{H}_{j}^{(l)}.$$



GuidedQuant: Results

GuidedQuant can be plugged into any layer-wise PTQ backend.

	Method	Bits↓	Wiki2-4K↓
Type	Original	16	5.12
Weight-only Scalar	SqueezeLLM	2.01	39.58
	LNQ (Ours)	2.01	23.31
	LNQ + GQuant (Ours)	2.01	8.83
Weight-only	QTIP	2.00	6.82
Vector	QTIP + GQuant (Ours)	2.00	6.11
Type Weight-and-Activation	Method	Bits↓	Wiki2-2K↓
	Original	16	5.47
	SpinQuant	W4A4KV4	5.95
	SpinQuant + GQuant (Ours)	W4A4KV4	5.89

 $[\]rightarrow$ Improves state-of-the-art methods for weight-only scalar, weight-only vector, and weight-and-activation quantization.

LNQ: Problem Formulation

Regarding weight-only scalar quantization, we further propose non-uniform quantization method LNQ (Layer-wise Non-uniform Quantization).

The optimization problem involves discrete assignment $\mathbf{P}^{(j)} \in \{0,1\}^{d_{\text{in}} \times m}$ and continuous codebook $\mathbf{c}^{(j)} \in \mathbb{R}^m$:

$$\begin{aligned} & \underset{\mathbf{c}^{(j)} \in \{0,1\}^{d_{\text{in}} \times m}}{\text{minimize}} & \sum_{j=1}^{d_{\text{out}}} \|\mathbf{X} \mathbf{w}_j - \mathbf{X} \mathbf{P}^{(j)} \mathbf{c}^{(j)}\|_2^2 \\ & \mathbf{c}^{(j)} \in \mathbb{R}^m \end{aligned} \\ & \text{subject to} \quad \mathbf{P}^{(j)} \mathbf{1}_m = \mathbf{1}_{d_{\text{in}}}, \end{aligned}$$

LNQ: Algorithm

LNQ is a non-uniform scalar quantization method that alternates **closed-form codebook update** and **coordinate-descent assignment update**.

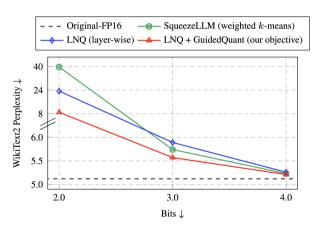
repeat:

$$\begin{aligned} \mathbf{c}^{(j)} &\leftarrow \left(\mathbf{P}^{(j)\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{P}^{(j)}\right)^{-1}\mathbf{P}^{(j)\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w}_{j} & \text{(codebook)} \\ \textbf{for } i = 1 \ \textbf{to} \ d_{\text{in}} \ \textbf{do:} \\ c_{q^{*}}^{(j)} &\leftarrow \underset{\widehat{W}_{ij} \in \{c_{1}^{(j)}, \dots, c_{m}^{(j)}\}}{(\widehat{\mathbf{w}}_{j} - \mathbf{w}_{j})^{\top}\mathbf{X}^{\top}\mathbf{X}(\widehat{\mathbf{w}}_{j} - \mathbf{w}_{j})} \\ \forall q \in [m]: P_{iq}^{(j)} = \begin{cases} 1 & \text{if } q = q^{*}, \\ 0 & \text{otherwise.} \end{cases} \end{aligned} \tag{assignment}$$

 \rightarrow Monotonically decreases the objective and guarantees convergence.

LNQ: Results

LNQ algorithm is fully compatible with **GuidedQuant**: Together, they achieve state-of-the-art performance on **weight-only scalar quantization**.



Conclusion

- ► **GuidedQuant** integrates end loss gradients into the layer-wise quantization objective, outperforming PTQ methods.
- ► LNQ is a non-uniform scalar quantization method that alternates closed-form codebook update and coordinate-descent assignment update.

Code: https://github.com/snu-mllab/GuidedQuant