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Motivation

1. Unsupervised GLAD methods generally focus on modelling normal graph distributions, which
struggles to 1dentify subtle anomalies, especially those near the boundaries of normal graphs.

2. Semi-supervised GLAD methods can leverage limited labelled anomalies to enhance decision
boundary learning. However, their effectiveness 1s constrained by the scarcity and diversity of
labelled anomalous graph.

Contribution

1. We introduce AGDiff, the first framework that explores the potential of diffusion models to
mitigate the anomaly scarcity challenge in GLAD.

2. We propose a latent diffusion process with perturbation conditions to generate pseudo-anomalous
graphs without relying on any labelled anomalies for improving decision boundary learning.

3. We demonstrate the effectiveness of AGDiff across extensive comparisons with state-of-the-art
GLAD baselines on diverse graph benchmarks.
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Figure 1. An 1llustration of the proposed
AGDiff framework.
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(1) Modeling Normality via Variational Inference:
We first pre-train a graph representation learning model aiming at capturing the normality of graphs.

Variational posterior: ¢(Z|X,A) = H q(z;| X, A), Pre-train loss: Lopretrain =£2 + ggdge Ny
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Reconstruction: A=T(ZZ"),

(2) Generating Anomalous Graphs via Latent Diffusion:
Building on a well-structured latent space that effectively captures normal graph patterns, we propose
a novel approach that utilizes latent diffusion models to generate pseudo-anomalous graphs.
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Reverse denoising process: Zi1 =
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The condition vector ¢ 1s obtained via a perturbation condition model 7, to add auxiliary noise information to the
generation process:
n~ N (0,1) is a Gaussian noise vector that introduces perturbations

to the initial latent representation, 7,,(+) transforms the perturbed
representation to a more expressive feature space.

Perturbation condition: € = T, (ZO) = U(WC(ZO + 77) + bc),

Loss of the latent diffusion model: Lgig = Ezo,e,t,c [||e — €p (Zt, t, C) ||g] .

(3) Detecting Anomalies from Subtle Deviations:
We employ a GIN-based anomaly detector h,, () to distinguish between normal graphs and pseudo-anomalous graphs,

and adopt a following binary cross-entropy loss L to train the anomaly detector:
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+ (1 —yg)log(l — he(G))),

1. The latent diffusion model learns to generate increasingly challenging pseudo-anomalies that explore
the decision boundary of the anomaly detector.

2. The gradient of the detector directs the diffusion process toward generating more informative
pseudo-anomalous samples.

3. The iterative refinement between generation and detection leads to a more robust anomaly detector.
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he(G) = MLP(GIN(X, A)),

(4) Joint Training:

L = Los + ALgisr

Total loss:
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(c) SIGNET (SC=0.01)
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(a) Original Normal Graph
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(b) Generated Pseudo Graph
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