

Leveraging Diffusion Model as Pseudo-Anomalous Graph Generator for Graph-Level Anomaly Detection,

Jinyu Cai¹, Yunhe Zhang ^{2†}, Fusheng Liu¹, See–Kiong Ng¹

¹ Institute of Data Science, National University of Singapore, Singapore

² Department of Computer and Information Science, SKL-IOTSC, University of Macau, China [†] Corresponding Author

Motivation

- 1. Unsupervised GLAD methods generally focus on modelling normal graph distributions, which struggles to identify subtle anomalies, especially those near the boundaries of normal graphs.
- 2. Semi-supervised GLAD methods can leverage limited labelled anomalies to enhance decision boundary learning. However, their effectiveness is constrained by the scarcity and diversity of labelled anomalous graph.

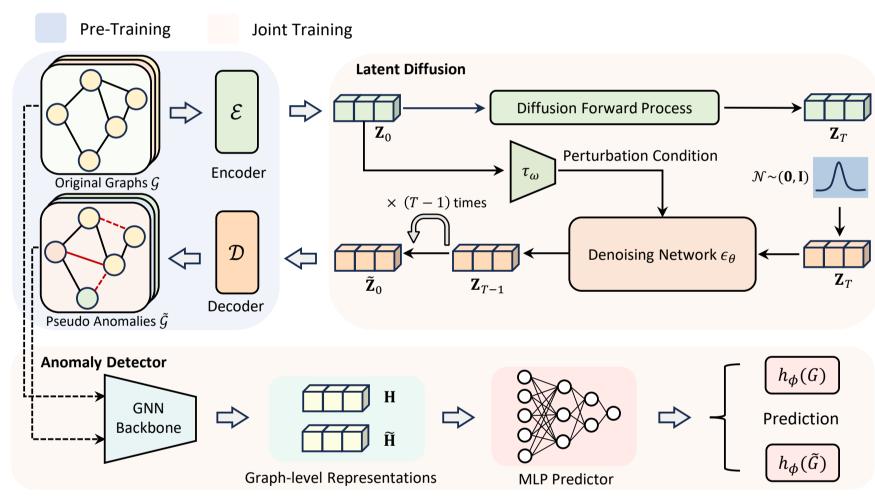
Contribution

- 1. We introduce AGDiff, the first framework that explores the potential of diffusion models to mitigate the anomaly scarcity challenge in GLAD.
- 2. We propose a latent diffusion process with perturbation conditions to generate pseudo-anomalous graphs without relying on any labelled anomalies for improving decision boundary learning.
- 3. We demonstrate the effectiveness of AGDiff across extensive comparisons with state-of-the-art GLAD baselines on diverse graph benchmarks.

Figure 1. An illustration of the proposed AGDiff framework.

The framework consists of three main components:

- (1) Pre-train model;
- (2) Latent diffusion-based graph generation model;
- (3) Anomaly detector.



Solution

(1) Modeling Normality via Variational Inference:

We first pre-train a graph representation learning model aiming at capturing the normality of graphs.

Variational posterior:
$$q(\mathbf{Z}|\mathbf{X}, \mathbf{A}) = \prod_{i=1}^{n} q(\mathbf{z}_{i}|\mathbf{X}, \mathbf{A}),$$
 Pre-train loss: $\mathcal{L}_{\text{pretrain}} = \ell_{\text{r}}^{\text{attr}} + \ell_{\text{r}}^{\text{edge}} + \ell_{\text{KL}}$

w.r.t $q(\mathbf{z}_{i}|\mathbf{X}, \mathbf{A}) = \mathcal{N}(\mathbf{z}_{i}|\boldsymbol{\mu}_{i}, \text{diag}(\boldsymbol{\sigma}_{i}^{2})),$

Reconstruction: $\hat{\mathbf{A}} = \mathcal{T}(\mathbf{Z}\mathbf{Z}^{\top}), \quad \hat{\mathbf{X}} = \mathcal{D}(\mathbf{Z}),$ Pre-train loss: $\mathcal{L}_{\text{pretrain}} = \ell_{\text{r}}^{\text{attr}} + \ell_{\text{r}}^{\text{edge}} + \ell_{\text{KL}}$

$$= \sum_{i=1}^{N} (\|\mathbf{X}_{i} - \hat{\mathbf{X}}_{i}\|_{F}^{2} + \mathcal{H}(\mathbf{A}_{i}, \hat{\mathbf{A}}_{i}) - \mathbf{KL}(q(\mathbf{Z}_{i}|\mathbf{X}_{i}, \mathbf{A}_{i})|\mathcal{P}(\mathbf{Z}))),$$

(2) Generating Anomalous Graphs via Latent Diffusion:

Building on a well-structured latent space that effectively captures normal graph patterns, we propose a novel approach that utilizes latent diffusion models to generate pseudo-anomalous graphs.

Forward diffusion process:
$$\mathbf{z}_t = \sqrt{\bar{\alpha}_t}\mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

Reverse denoising process:
$$\mathbf{z}_{t-1} = \frac{1}{\sqrt{\alpha}} \left(\mathbf{z}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) \right) + \tilde{\beta} \mathbf{v},$$

The condition vector \mathbf{c} is obtained via a perturbation condition model τ_{ω} to add auxiliary noise information to the generation process:

Perturbation condition: $\mathbf{c} = \tau_{\omega}(\mathbf{z}_0) = \sigma(\mathbf{W}_{\mathbf{c}}(\mathbf{z}_0 + \eta) + \mathbf{b}_{\mathbf{c}})$

 $\eta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is a Gaussian noise vector that introduces perturbations to the initial latent representation, $\tau_{\omega}(\cdot)$ transforms the perturbed representation to a more expressive feature space.

Loss of the latent diffusion model: $\mathcal{L}_{\text{diff}} = \mathbb{E}_{\mathbf{z}_0, \epsilon, t, \mathbf{c}} \left[\|\epsilon - \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c})\|_2^2 \right].$

(3) Detecting Anomalies from Subtle Deviations:

We employ a GIN-based anomaly detector $h_{\varphi}(\cdot)$ to distinguish between normal graphs and pseudo-anomalous graphs, and adopt a following binary cross-entropy loss \mathcal{L}_{cls} to train the anomaly detector:

$$h_{\phi}(G) = ext{MLP}(ext{GIN}(\mathbf{X}, \mathbf{A})), \qquad \mathcal{L}_{ ext{cls}} = -\frac{1}{|\mathcal{G} \cup \tilde{\mathcal{G}}|} \sum_{G \in \mathcal{G} \cup \tilde{\mathcal{G}}} (y_G \log h_{\phi}(G)) + (1 - y_G) \log(1 - h_{\phi}(G))),$$

(4) Joint Training:

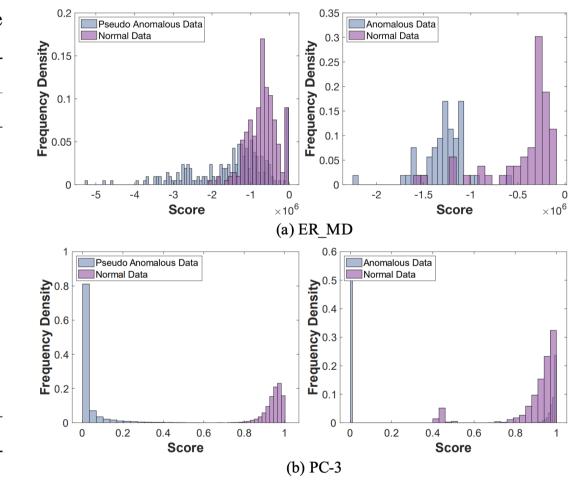
- 1. The latent diffusion model learns to generate increasingly challenging pseudo-anomalies that explore the decision boundary of the anomaly detector.
- Total loss: $\mathcal{L} = \mathcal{L}_{\mathrm{cls}} + \lambda \mathcal{L}_{\mathrm{diff}}$
- 2. The gradient of the detector directs the diffusion process toward generating more informative pseudo-anomalous samples.
- 3. The iterative refinement between generation and detection leads to a more robust anomaly detector.

Comparison Results

Table 1. Average AUCs and F1-Scores with standard deviation (10 trials) on four small and moderated graph datasets. The best results are marked in **bold**, and "OM" denotes out-of-memory.

Method	MUTAG		DD		COX2		ER_MD	
	AUC	F1-Score	AUC	F1-Score	AUC	F1-Score	AUC	F1-Score
SP (Borgwardt & Kriegel, 2005)	67.52±0.00	60.00±0.00	82.73±0.00	76.09±0.00	54.08±0.00	49.32±0.00	40.92±0.00	37.74±0.00
WL (Shervashidze et al., 2011)	60.00±0.00	89.12±0.00	81.57±0.00	74.64 ± 0.00	49.32±0.00	50.19 ± 0.00	37.74 ± 0.00	45.71 ± 0.00
NH (Hido & Kashima, 2009)	79.97±0.40	76.00 ± 0.00	81.61±0.32	73.91 ± 0.65	61.41 ± 0.82	56.44 ± 1.03	51.55±2.00	50.19 ± 0.92
RW (Vishwanathan et al., 2010)	86.98±0.00	83.33±0.00	OM	OM	52.43±0.00	30.00 ± 0.00	78.94 ± 0.00	65.96 ± 0.00
OCGIN (Zhao & Akoglu, 2023)	74.66±1.68	62.95±0.00	66.59±4.44	56.12±0.00	59.64±5.78	47.95 ± 0.00	47.63±3.59	$50.94{\pm}1.89$
OCGTL (Qiu et al., 2022)	87.04±1.74	80.00±0.00	77.52 ± 0.43	71.65 ± 0.73	60.42 ± 0.90	55.62 ± 5.24	72.67 ± 0.20	67.17 ± 0.92
GLocalKD (Ma et al., 2022)	90.59±0.61	86.17±0.91	80.59±0.00	73.48 ± 0.57	51.42±0.66	51.24 ± 0.60	78.94 ± 0.00	$70.21 {\pm} 0.00$
iGAD (Zhang et al., 2022)	92.58±1.25	85.20±2.30	74.83±2.30	$70.39{\pm}2.60$	72.09 ± 2.29	61.94 ± 1.09	80.56±2.57	$74.57{\pm}2.45$
SIGNET (Liu et al., 2023a)	87.73±2.45	73.07±4.11	59.53±3.45	56.76±3.47	52.80±2.53	$20.24{\pm}4.92$	77.02 ± 1.07	77.06 ± 1.70
MUSE (Kim et al., 2024)	83.81±5.17	75.36±5.02	61.06±3.03	58.32±3.08	54.14±3.23	52.14 ± 3.49	31.07±4.58	35.67 ± 4.68
DO2HSC (Zhang et al., 2024)	88.83±6.58	86.80±6.21	77.12±2.15	70.87±2.73	63.16±3.36	58.36±2.95	68.31±4.31	66.63±3.04
AGDiff	95.83±2.15	89.45±1.37	88.23±0.67	84.06±0.59	77.59±3.39	68.15±1.49	91.21±1.84	86.04±2.26

Scoring Distribution



Visualization Results

