

Efficient Logit-based Knowledge Distillation of Deep Spiking Neural Networks for Full-Range Timestep Deployment

Chengting Yu[†], Xiaochen Zhao[†], Lei Liu, Shu Yang, Gaoang Wang, Erping Li, and <u>Aili Wang</u>*

ZJUI Institute, Zhejiang University Haining, Zhejiang, China

Code link: https://github.com/Intelli-Chip-Lab/snn_temporal_decoupling_distillation

Motivation

- SNNs are brain-inspired models
 - Offer a potential energy efficiency advantage on neuromorphic hardware
 - An alternative to traditional ANNs

- Major limitations of SNNs:
 - Lower accuracy compared to ANNs
 - The fixed inference timesteps restrict adaptability
 - Changing inference timesteps requires retraining

Key Innovation

- Approach: leverages the spatiotemporal properties of SNNs
- Proposed Solution: a novel distillation framework for deep SNNs
 - Works across a full range of timesteps
 - No retraining needed when inference timesteps change.
- Theoretical Contribution:
 - Proof that training leads to convergence for all time-based models.
- Empirical Results:
 - Tested on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet
 - Achieves state-of-the-art performance

Method Overview

- Transforms traditional logits-based distillation into temporal-wise distillation
- Integrates ensemble learning-based self-distillation

Temporal-wise Distillation for Deep SNNs

- Unique to SNNs: SNNs generate logits at multiple timesteps
- Insight:
 - Viewing SNN outputs over time as an ensemble
 - Accuracy improves when each timestep's output becomes better
- Proposed Method
 - Redefine distillation targets to include logits from all timesteps $z_{ens}^S = \frac{1}{T} \sum_t z^S(t)$
 - Temporal-wise cross-entropy (TWCE) for hard targets

$$\mathcal{L}_{TWCE} = \frac{1}{T} \sum_{t} \mathcal{L}_{CE}(S(z^{S}(t)), y)$$

Temporal-wise KL divergence for soft labels

$$\mathcal{L}_{TWKL} = \frac{1}{T} \sum_{t} \mathcal{L}_{KL}(S(z^{S}(t)/\tau), S(z^{A}/\tau))$$

• The **overall objectives** for temporal-wise distillations $\mathcal{L}_{TWKD} = \mathcal{L}_{TWCE} + \alpha \mathcal{L}_{TWKL}$

Ensemble Learning-based Self-Distillation

Key Observation:

- Voting logits (averaged over time) are more effective
- Consistent with results from student-ensemble learning research

Proposed Method:

Adding final voting logits as an additional soft label for self-distillation

$$\mathcal{L}_{TWSD} = \frac{1}{T} \sum_{t} \mathcal{L}_{KL}(S(z^{S}(t)/\tau), S(z_{ens}^{S}/\tau))$$

Effectiveness:

- Enhances the model's learning without increasing computational cost
- Integrates seamlessly with the temporal-wise framework for better performance
- Overall Training Objective: $\mathcal{L}_{TWKD} = \mathcal{L}_{TWCE} + \alpha \mathcal{L}_{TWKL} + \beta \mathcal{L}_{TWSD}$

Convergence of Temporal-wise Distillation

- Problem Identified by Deng et al., 2022:
 - SNNs may struggle with convergence in classification tasks due to high secondorder moments
- Solution:
 - Optimize outputs at each timestep helps avoid convergence issues
- Theoretical Support:
 - \mathcal{L}_{TWCE} forms the upper bound of \mathcal{L}_{SCE}

$$\mathcal{L}_{SCE} = -\sum_{i} y_{i} log S_{i}(\mathbf{z}_{ens}^{S}(t), \mathbf{y}) \leq -\frac{1}{T} \sum_{t} \sum_{i} y_{i} log S_{i}(\mathbf{z}^{S}(t), \mathbf{y}) = \mathcal{L}_{TWCE}$$

- Similarly, soft-label objectives can also be temporally decoupled
- Thus, we have $\mathcal{L}_{SKD} \leq \mathcal{L}_{TWKD}$

Results--Performance Comp. on Benchmarks

Results on CIFAR10 and CIFAR100 Datasets

Results on ImageNet and CIFAR10-DVS Datasets

Table 1. Performance comparison of top-1 accuracy (%) on CIFAR-10 and CIFAR-100 datasets, averaged over three experimental runs.

	Method	Model	Timestep	Top-1 Acc. (%)	
			Timestep	CIFAR-10	CIFAR-100
	STBP-tdBN (Zheng et al., 2021)	ResNet-19	6 4 2	93.16 92.92 92.34	- - -
	Dspike (Li et al., 2021b)	ResNet-18	6 4 2	94.25 93.66 93.13	74.24 73.35 71.68
	TET (Deng et al., 2022)	ResNet-19	6 4 2	94.50 94.44 94.16	74.72 74.47 72.87
Direct-training	RecDis (Guo et al., 2022b)	ResNet-19	6 4 2	95.55 95.53 93.64	74.10
	DSR (Meng et al., 2022)	ResNet-18	20	95.10	78.50
	SSF (Wang et al., 2023a)	ResNet-18	20	94.90	75.48
	SLTT (Meng et al., 2023)	ResNet-18	6	94.4	74.38
	OS (Zhu et al., 2023)	ResNet-19	4	95.20	77.86
	RateBP (Yu et al., 2024)	ResNet-18	6 4 2	95.90 95.61 94.75	79.02 78.26 75.97
	Null of Tuest dis, 2024)	ResNet-19	6 4 2	96.36 96.26 96.23	80.83 80.71 79.87
	KDSNN (Xu et al., 2023b)	ResNet-18	4	93.41	-
	Joint A-SNN (Guo et al., 2023b)	ResNet-18	4 2	95.45 94.01	77.39 75.79
		ResNet-34	4 2	96.07 95.13	79.76 77.11
	SM (Deng et al., 2023)	ResNet-18	4	94.07	79.49
		ResNet-19	4	96.82	81.70
	SAKD (Qiu et al., 2024a)	ResNet-19	4	96.06	80.10
	BKDSNN (Xu et al., 2024)	ResNet-19	4	94.64	74.95
w/ distillation	TSSD (Zuo et al., 2024)	ResNet-18	2	93.37	73.40
	TKS (Dong et al., 2024)	ResNet-19	4	96.35	79.89
	EnOF (Guo et al.)	ResNet-19	2	96.19	82.43
	SuperSNN (Zhang et al.)	ResNet-19	6 2	95.61 95.08	77.45 76.49
	Our	ResNet-18	6 4 2	95.96 95.57 95.11	79.80 79.10 77.32
		ResNet-19	6 4 2	97.00 96.97 96.65	82.56 82.47 81.47

Table 2. Performance comparison of top-1 accuracy (%) on ImageNet with single crop.

Method	Model	Timestep	Acc. (%)	
STBP-tdBN (Zheng et al., 2021)	ResNet-34 ResNet-50	6 6	63.72 64.88	
Dspike (Li et al., 2021b)	ResNet-34	6	68.19	
RecDis (Guo et al., 2022b)	ResNet-34	6	67.33	
TET (Deng et al., 2022)	ResNet-34	4	68.00	
OS (Zhu et al., 2023)	ResNet-34	4	67.54	
RateBP (Yu et al., 2024)	ResNet-34	4	70.01	
KDSNN (Xu et al., 2023b)	ResNet-34	4	67.18	
LaSNN (Hong et al., 2023)	ResNet-34	4	66.94	
SM (Deng et al., 2023)	ResNet-34	6 4	69.35 68.25	
SAKD (Qiu et al., 2024a)	ResNet-34	4	70.04	
TKS (Dong et al., 2024)	ResNet-34	4	69.60	
EnOF (Guo et al.)	ResNet-34	4	67.40	
Our	ResNet-34	4	71.04	

Table 3. Performance comparison of top-1 accuracy (%) on CIFAR10-DVS, averaged over three experimental runs.

Method	Model	Timestep	Acc. (%)
STBP-tdBN (Zheng et al., 2021)	ResNet-19	10	67.80
Dspike (Li et al., 2021b)	ResNet-18	10	75.40
RecDis (Guo et al., 2022b)	ResNet-19	10	72.42
TET (Deng et al., 2022)	VGGSNN	10	83.17
SM (Deng et al., 2023)	ResNet-18	10	83.19
SSF (Wang et al., 2023a)	VGG-11	20	78.00
SLTT (Meng et al., 2023)	VGG-11	10	77.17
SAKD (Qiu et al., 2024a)	VGG-11 ResNet-19	4 4	81.50 80.30
Our	ResNet-18	4 10	83.50 86.40

Performance:

- Achieves **comparable or superior accuracy**
- Effectively reduces the accuracy gap between SNNs and ANNs.
- ANN-Guided Distillation Cost: running the ANN teacher model to generate soft labels.

Results--Ablation Study

Ablation Study of Training Objectives

Table 5. Performance comparison on objectives combinations using ResNet-18 on the CIFAR100 dataset.

T	$\mathcal{L}_{ ext{TWCE}}$	w/ \mathcal{L}_{TWSD}	w/ \mathcal{L}_{TWKL}	w/ $\mathcal{L}_{TWKL} \& \mathcal{L}_{TWSD}$
4 6	78.58	78.94	79.05	79.10
	79.26	79.63	79.56	79.80

- With \mathcal{L}_{TWKL} > \mathcal{L}_{TWCE} only
- \mathcal{L}_{TWSD} improves further
- All three components (\mathcal{L}_{TWCE} , \mathcal{L}_{TWKL} , \mathcal{L}_{TWSD}) are mutually compatible
- Work together to improve the model's accuracy and stability.

Comparison Study on Temporal Decoupling

Table 6. Performance comparison of temporal decoupling on hard targets and soft labels using ResNet-18 on the CIFAR100 dataset.

T	$\mid \mathcal{L}_{ ext{SCE}}$	$\mathcal{L}_{ ext{TWCE}}$	\mathcal{L}_{SKL}	\mathcal{L}_{TWKL}	Accuracy (%)
4	\ \frac{1}{\sqrt{1}}		\checkmark	\checkmark	78.32 78.60
4		√ ✓	\checkmark	✓	78.74 79.05
6	\	√	√ √	√ √	79.07 79.15 79.32 79.56

- Decoupling either \mathcal{L}_{SCE} or \mathcal{L}_{SKL} individually improves performance
- Combining both decoupled losses leads to the **best overall** performance.

Results--Loss Convergence

- Temporal decoupling:
 - Enhances convergence of loss across different timesteps
 - · Loss trajectories become tighter and more uniform, indicating stable learning
 - Matches theoretical expectations

Results--Analysis of Full-Range Performance

- In standard logits-based distillation
 - Each model performs best only in a narrow timestep range
- Proposed temporal-wise logits-based distillation
 - A single model trained at T = 6 performs well across all inference timesteps (1 to 6).
 - Reducing the need to retrain for different deployment scenarios

Conclusion

- Problem Addressed: Inflexibility and performance issues in SNNs
- Proposed Method: A novel knowledge distillation framework for deep SNNs
 - Introduces temporal decoupling into the logits-based distillation framework for SNNs
 - Integrates ensemble learning-based self-distillation
 - Provides both theoretical analysis and empirical experiments

Experimental Results:

- One of the most efficient ANN-guided training strategies for SNNs in terms of performance and computational cost
- Enables robust training and generalization across a full range of inference timesteps
- Aims to support broader adoption and development of SNN-based technologies

Acknowledgement & Resources

Funding Grants

- NSFC with Grant No. 62304203
- NSF of Zhejiang Province, China with Grant No. LQ22F010011
- The ZJU-YST joint research center for fundamental science.

Resources

Thank you!

Contact us: {chengting.21, xiaochen.24, ailiwang}@intl.zju.edu.cn