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Motivation

• SNNs are brain-inspired models

• Offer a potential energy efficiency 
advantage on neuromorphic hardware

• An alternative to traditional ANNs

• Major limitations of SNNs:

• Lower accuracy compared to ANNs

• The fixed inference timesteps restrict 
adaptability

• Changing inference timesteps requires 
retraining
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Key Innovation

• Approach: leverages the spatiotemporal properties of SNNs

• Proposed Solution: a novel distillation framework for deep SNNs

• Works across a full range of timesteps

• No retraining needed when inference timesteps change.

• Theoretical Contribution: 

• Proof that training leads to convergence for all time-based models.

• Empirical Results:

• Tested on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet

• Achieves state-of-the-art performance
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Method Overview

• Transforms traditional logits-based distillation into temporal-wise 

distillation

• Integrates ensemble learning-based self-distillation
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Temporal-wise Distillation for Deep SNNs
• Unique to SNNs: SNNs generate logits at multiple timesteps

• Insight: 

• Viewing SNN outputs over time as an ensemble

• Accuracy improves when each timestep's output becomes better

• Proposed Method

• Redefine distillation targets to include logits from all timesteps 𝒛𝒆𝒏𝒔
𝑺 =
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• Temporal-wise cross-entropy (TWCE) for hard targets
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• Temporal-wise KL divergence for soft labels
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• The overall objectives for temporal-wise distillations 𝓛𝑻𝑾𝑲𝑫= 𝓛𝑻𝑾𝑪𝑬 + 𝜶𝓛𝑻𝑾𝑲𝑳

5



Ensemble Learning-based Self-Distillation

• Key Observation:

• Voting logits (averaged over time) are more effective

• Consistent with results from student-ensemble learning research

• Proposed Method:

• Adding final voting logits as an additional soft label for self-distillation

𝓛𝑻𝑾𝑺𝑫 =
𝟏

𝑻
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𝓛𝑲𝑳(𝑺 Τ𝒛𝑺 𝒕 𝝉 , 𝑺 Τ𝒛𝒆𝒏𝒔
𝑺 𝝉 )

• Effectiveness:

• Enhances the model’s learning without increasing computational cost

• Integrates seamlessly with the temporal-wise framework for better performance

• Overall Training Objective: 𝓛𝑻𝑾𝑲𝑫= 𝓛𝑻𝑾𝑪𝑬 + 𝜶𝓛𝑻𝑾𝑲𝑳 + 𝛽𝓛𝑻𝑾𝑺𝑫
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Convergence of Temporal-wise Distillation

• Problem Identified by Deng et al., 2022:

• SNNs may struggle with convergence in classification tasks due to high second-

order moments

• Solution: 

• Optimize outputs at each timestep helps avoid convergence issues

• Theoretical Support:

• 𝓛𝑻𝑾𝑪𝑬 forms the upper bound of 𝓛𝑺𝑪𝑬

𝓛𝑺𝑪𝑬 = −෍

𝒊

𝒚𝒊𝒍𝒐𝒈 𝑺𝒊 𝒛𝒆𝒏𝒔
𝑺 𝒕 , 𝒚 ≤ −
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𝒚𝒊𝒍𝒐𝒈 𝑺𝒊 𝒛
𝑺 𝒕 , 𝒚 = 𝓛𝑻𝑾𝑪𝑬

• Similarly, soft-label objectives can also be temporally decoupled

• Thus, we have 𝓛𝑺𝑲𝑫 ≤ 𝓛𝑻𝑾𝑲𝑫
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Results--Performance Comp. on Benchmarks

Results on ImageNet and CIFAR10-DVS DatasetsResults on CIFAR10 and CIFAR100 Datasets

• Performance:
• Achieves comparable or superior accuracy
• Effectively reduces the accuracy gap between 

SNNs and ANNs.
• ANN-Guided Distillation Cost: running the ANN 

teacher model to generate soft labels.
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Results--Ablation Study

• With ℒ𝑇𝑊𝐾𝐿 > ℒ𝑇𝑊𝐶𝐸 only

• ℒ𝑻𝑾𝑺𝑫 improves further

• All three components (ℒ𝑻𝑾𝑪𝑬, ℒ𝑻𝑾𝑲𝑳, 

ℒ𝑻𝑾𝑺𝑫) are mutually compatible

• Work together to improve the model's 

accuracy and stability.

Ablation Study of Training Objectives Comparison Study on Temporal Decoupling

• Decoupling either ℒ𝑺𝑪𝑬 or ℒ𝑺𝑲𝑳
individually improves performance

• Combining both decoupled losses

leads to the best overall 

performance. 9



Results--Loss Convergence

• Temporal decoupling:

• Enhances convergence of loss across different timesteps

• Loss trajectories become tighter and more uniform, indicating stable learning

• Matches theoretical expectations
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Results--Analysis of Full-Range Performance

• In standard logits-based distillation

• Each model performs best only in a narrow timestep range

• Proposed temporal-wise logits-based distillation

• A single model trained at T = 6 performs well across all inference timesteps (1 to 6).

• Reducing the need to retrain for different deployment scenarios
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Conclusion

• Problem Addressed: Inflexibility and performance issues in SNNs

• Proposed Method: A novel knowledge distillation framework for deep SNNs

• Introduces temporal decoupling into the logits-based distillation framework for 

SNNs

• Integrates ensemble learning-based self-distillation

• Provides both theoretical analysis and empirical experiments 

• Experimental Results:

• One of the most efficient ANN-guided training strategies for SNNs in terms of 

performance and computational cost

• Enables robust training and generalization across a full range of inference 

timesteps

• Aims to support broader adoption and development of SNN-based technologies
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