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Motivation

 SNNs are brain-inspired models

 Offer a potential energy efficiency
advantage on neuromorphic hardware

 An alternative to traditional ANNs

* Major limitations of SNNs:
» Lower accuracy compared to ANNs
* The fixed inference timesteps restrict
adaptability
« Changing inference timesteps requires
retraining

(a) SNNs by Standard Logits-based KD
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Key Innovation

« Approach: leverages the spatiotemporal properties of SNNs

* Proposed Solution: a novel distillation framework for deep SNNs

« Works across a full range of timesteps
* No retraining needed when inference timesteps change.

* Theoretical Contribution:
 Proof that training leads to convergence for all time-based models.

 Empirical Results:
» Tested on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet

» Achieves state-of-the-art performance



Method Overview

 Transforms traditional logits-based distillation into temporal-wise
distillation

* Integrates ensemble learning-based self-distillation

b) Temporal-wise Logit-based Distillation
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Temporal-wise Distillation for Deep SNNs

« Unique to SNNs: SNNs generate logits at multiple timesteps

* Insight:
* Viewing SNN outputs over time as an ensemble
» Accuracy improves when each timestep's output becomes better

* Proposed Method
- Redefine distillation targets to include logits from all timesteps z3,,; = %ths(t)

« Temporal-wise cross-entropy (TWCE) for hard targets
1
__ S
Lrwce = TZ Lcp(S (Z (t)) ,¥)
« Temporal-wise KL divergence for soft labels
1
LrwkL = fz Ly (S(25@) /1), 8(2% /7))
t

« The overall objectives for temporal-wise distillations Lrwkp= Ltwce + aLrwkL



Ensemble Learning-based Self-Distillation

« Key Observation:
« Voting logits (averaged over time) are more effective
« Consistent with results from student-ensemble learning research

* Proposed Method.:
« Adding final voting logits as an additional soft label for self-distillation

1
Lrwsp = T 2 Ly (S(2°@)/7),8(25,5/7))

 Effectiveness:
 Enhances the model’s learning without increasing computational cost
* Integrates seamlessly with the temporal-wise framework for better performance

* Overall Training Objective: Lyywkp= Lrwce + @Lrwikr + BLrwsp



Convergence of Temporal-wise Distillation

* Problem Identified by Deng et al., 2022:

« SNNs may struggle with convergence in classification tasks due to high second-
order moments

 Solution:
« Optimize outputs at each timestep helps avoid convergence issues

* Theoretical Support:

* Lrywce forms the upper bound of L¢ - f
1
Lscg = — z yilog Si(z5,5(1),y) < —?2 2 yilog S;(z°(t),y) = Lrwck
i t i

« Similarly, soft-label objectives can also be temporally decoupled
° ThUS, we have LSKD < LTWKD



Results--Performance Comp. on Benchmarks

Results on CIFAR10 and CIFAR100 Datasets Results on ImageNet and CIFAR10-DVS Datasets

Table 1. Performance comparison of top-1 accuracy (%) on CIFAR-10 and CIFAR-100 datasets, averaged over three experimental runs.
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Results--Ablation Study

Ablation Study of Training Objectives Comparison Study on Temporal Decoupling
Table 5. Performance comparison on objectives combinations us- Table 6. Performance comparison of temporal decoupling on hard
ing ResNet-18 on the CIFAR100 dataset. targets and soft labels using ResNet-18 on the CIFAR100 dataset.

T Lorwer W Lrwsn W Lrwkl W/ Lrwia &L1wsh T | Lsce Lrwee Lsko  Lrwke | Accuracy (%)
4 7858 78.94 79.05 79.10 v v 78.32
6 79.26 79.63 79.56 79.80 4 v v 78.60
v v 78.74
v v 79.05
i v v 79.07
- v v 79.32
* Lwsp improves further N Y 7956

All three components (Lrwces LTwkLs

Lrwsp) are mutually compatible * Decoupling either Lgcg or Lgk;

individually improves performance

Work together to improve the model's

accuracy and stability. « Combining both decoupled losses
leads to the best overall
performance. .



Results--Loss Convergence

(a) Standard Logits-based Distillation
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(b) Temporal-wise Distillation

» Temporal decoupling:
 Enhances convergence of loss across different timesteps
* Loss trajectories become tighter and more uniform, indicating stable learning
 Matches theoretical expectations
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Results--Analysis of Full-Range Performance

(@) SNNs by Standard Logits-based KD (b) SNNs by Temporal-wise Distillation
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* |In standard logits-based distillation
« Each model performs best only in a narrow timestep range

* Proposed temporal-wise logits-based distillation
« Asingle model trained at T = 6 performs well across all inference timesteps (1 to 6).

* Reducing the need to retrain for different deployment scenarios .



Conclusion

* Problem Addressed: Inflexibility and performance issues in SNNs

* Proposed Method: A novel knowledge distillation framework for deep SNNs

* Introduces temporal decoupling into the logits-based distillation framework for
SNNs

* Integrates ensemble learning-based self-distillation
* Provides both theoretical analysis and empirical experiments

 Experimental Results:

* One of the most efficient ANN-guided training strategies for SNNs in terms of
performance and computational cost

« Enables robust training and generalization across a full range of inference
timesteps

« Aims to support broader adoption and development of SNN-based technologies
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