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A/B testing

Figure 1: An example of A/B testing setup. Taken from towardsdatascience.com.

Average Treatment Effect (ATE)= the averaged difference in expected re-
wards (denoted by Rt ∈ R) between the new and old policies over all time
steps t:

ATE =
1

T

T∑
t=1

E1(Rt)−
1

T

T∑
t=1

E0(Rt),
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https://towardsdatascience.com/how-to-conduct-a-b-testing-3076074a8458


Ridesharing

Figure 2: An illustration of a ridesharing platform. Taken from callme-
spring.github.
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https://callmespring.github.io/slides/design1h.pdf
https://callmespring.github.io/slides/design1h.pdf


Switchback Experiments

Figure 3: Orange blocks represent control group assignments, and green blocks
represent treatment assignments. The initial policy is control in the left plot
and treatment in the right plot.
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Challenges

1. Carryover Effects & Switchback Experiments
• Past treatments influence future observations (Li et al., 2024, Figure 2).
• Carryover biases lead to biased estimates or flawed statistical inference

procedures(Bojinov, Simchi-Levi, and Zhao, 2023; Xiong, Chin, and Tay-
lor, 2023; Hu and Wager, 2022; Shi, Wang, et al., 2023).

2. Auto-correlated Errors(see the Figure 4)
• Autoregressive, moving average, and exchangeable covariance structures

are widely used in statistical modeling(Williams, 1952; Berenblut and
Webb, 1974; Zeger, 1988).

To the best of our knowledge, no prior work has systematically exam-
ined the effectiveness of different switchback designs in Reinforcement
Learning (RL) while accounting for these two key factors.
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Challenge I: Carryover Effects
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Adopting the Closest Driver Policy
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Some Time Later · · ·
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Miss One Order
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Consider a Different Action
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Able to Match All Orders
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Challenge I: Carryover Effects (Cont’d)

past treatments → distribution of drivers →

future outcomes
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Challenge II: Real-data based autocorrelations

Figure 4: The estimated correlation coefficients between pairs of fitted reward
residuals, based on two datasets provided by a ridesharing company. Most
residual pairs are non-negatively correlated, with a large proportion exhibiting
positive correlation. The diagonal components have been omitted to enhance
clarity.
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Our Contributions
The analysis unravels the interplay between carryover effects and reward autocorrelations
in determining the optimal switchback experiments. In particular, when the carryover
effect is weak, we show that:
• With predominantly positively correlated reward errors, the precision of the

ATE estimator tends to improve with more frequent alternations between policies.
• With predominantly negatively correlated reward errors, the precision of the

ATE estimator tends to improve with less frequent alternations between policies.
• With predominantly uncorrelated reward errors, all designs become asymptot-

ically equivalent in theory. Our numerical studies indicate that the Alternating-Day
(AD, i.e., m = T ) design generally exhibits superior performance in finite samples.

Additionally, when the carryover effect is large, AD or Switchback designs with less
frequent switches tend to perform the best.
Finally, these findings are estimator-agnostic, i.e. they apply to most RL estimators.
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MDP with autocorrelated errors

Figure 5: Visualization of our Markov Decision Process (MDP) with autocor-
related reward errors. The solid lines represent the causal relationships. The
dash lines imply that the reward errors are potentially correlated.
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Theory: Main Theorem
Notations:
• n is the number of experimental days, T is the number of time intervals, and Rmax

bounds the absolute rewards: maxt |Rt| ≤ Rmax.
• σe(t1, t2) denotes the covariance between reward errors et1 and et2 .
• δ measures the impact of the new policy on state transition functions pt(s

′|a, s), where
s, s′ ∈ Rd and a ∈ {0, 1}. Specifically, δ = maxs,t

∑
s′ |pt(s

′|1, s) − pt(s
′|0, s)|.

The Excess Mean Square Errors (MSEs) Theorem:
• Under the certain conditions: bounded rewards (i.e. maxt |Rt| ≤ Rmax), estimators,

states and transition functions, Non-singular covariance matrix, sieve basis functions,
nuisance functions, the difference in the MSE of the ATE estimator (i.e. OLS, LSTD,
DRL) between the AD design and an m-switchback design (where each switch
duration equals m) is lower bounded by

16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1,l2=1

σe(l1 + k1m, l2 + k2m)

︸ ︷︷ ︸
Autocorrelated term

− O(
δR2

max
n

)︸ ︷︷ ︸
Carryover effects term

− o(n−1)︸ ︷︷ ︸
Estimator-dependent reminder term

,

for some constant c > 0.
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Practical workflow

Figure 6: The proposed workflow guideline.

To summary: Two key factors that influence the efficiency of Switch-
back experiments are: the autocorrelation structure and the mag-
nitude of the carryover effect.
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Thank you for your attention!
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