
Merge-Friendly Post-Training Quantization for 
Mutli-Target Domain Adaptation

Juncheol Shin, Minsang Seok, Seonggon Kim, Eunhyeok Park

Pohang University of Science and Technology



2/28

Introduction

◼ Quantization

̶ One of the most widely adopted optimization techniques

̶ Activations and weights are stored in a low-precision domain

• Reduced memory usage & computational requirements

Various HardwaresQuantized Neural NetworkNeural Network

Quantization Deployment
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Introduction

◼ Model Merging

̶ Emerging technique to generate model for multiple tasks

̶ Recent study revealed even simple weight averaging outperforms other methods in MTDA

• Shed light to real-time adaptive AI via model merging in edge devices

Network - Domain1

Deployment Target Domain 1

Target Domain 2

Network - Domain2 Merged Network
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Introduction

◼ Model Merging

̶ Emerging technique to generate model for multiple tasks

̶ Recent study revealed even simple weight averaging outperforms other methods in MTDA

• Shed light to real-time adaptive AI via model merging in edge devices

− + Quantization?

Deployment Target Domain 1

Target Domain 2

Network - Domain1 Network - Domain2 Merged Network
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Motivation

◼ Quantization + Model Merging ?

̶ Discretization that is not well aligned with the merging

• Suboptimal and degraded performance with naïve quantization

̶ Little attention has been given to the interplay
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Motivation

◼ HDRQ : Hessian and Distance Regulariziang Quantization

̶ Theoretical analysis of quantization’s impact on model merging

̶ Propose regularization techniques for merge-friendly quantization

̶ Noise-sampling-based rounding to handle ambiguity problem
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Analysis

◼ Error Barrier

̶ Quantifies the degree of interpolation-induced performance degradation

• 𝜃1 and 𝜃2 denotes converged weights for each domain

• 𝜃𝜆 denotes interpolated weight

− 𝜃𝜆 = 1 − 𝜆 𝜃1 + 𝜆𝜃2, 𝜆 ∈ [0, 1]

max
𝜆∈[0,1]

[𝐿 𝜃𝜆 −
1

2
(𝐿 𝜃1 + 𝐿 𝜃2 ]
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Analysis

◼ Error Barrier

̶ Quantifies the degree of interpolation-induced performance degradation

• 𝜃1 and 𝜃2 denotes converged weights for each domain

• 𝜃𝜆 denotes interpolated weight

− 𝜃𝜆 = 1 − 𝜆 𝜃1 + 𝜆𝜃2, 𝜆 ∈ [0, 1]

◼ + Quantization

̶ Error induced by quantization can be approximated as additive uniform noise

• 𝜖1~ 𝑈 −
𝑠1

2
,
𝑠1

2
and 𝜖2~ 𝑈 −

𝑠2

2
,
𝑠2

2
with quantization step sizes 𝑠1 and 𝑠2

max
𝜆∈[0,1]

[𝐿 𝜃𝜆 −
1

2
(𝐿 𝜃1 + 𝐿 𝜃2 ]

max
𝜆∈[0,1]

[𝐿 𝜃𝜆 + 𝜖𝜆 −
1

2
(𝐿 𝜃1 + 𝜖1 + 𝐿 𝜃2 + 𝜖2 ]
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Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

2
(𝜖1 ∙ ∇𝜃𝐿 𝜃1 +

1

2
𝜖1
𝑇 ∙ ∇𝜃

2𝐿 𝜃1 ∙ 𝜖1 +

max
𝜆∈[0,1]

[𝐿 𝜃𝜆 −
1

2
(𝐿 𝜃1 + 𝐿 𝜃2 ] +

𝜖2 ∙ ∇𝜃𝐿 𝜃2 +
1

2
𝜖2
𝑇 ∙ ∇𝜃

2𝐿 𝜃2 ∙ 𝜖2)]
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Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

2
(𝜖1 ∙ ∇𝜃𝐿 𝜃1 +

1

2
𝜖1
𝑇 ∙ ∇𝜃

2𝐿 𝜃1 ∙ 𝜖1 +

max
𝜆∈[0,1]

[𝐿 𝜃𝜆 −
1

2
(𝐿 𝜃1 + 𝐿 𝜃2 ] +

𝜖2 ∙ ∇𝜃𝐿 𝜃2 +
1

2
𝜖2
𝑇 ∙ ∇𝜃

2𝐿 𝜃2 ∙ 𝜖2)]

Assuming zero error barrier for simplicity

First-order term of 
converged point

First-order term of 
converged point
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Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

4
(𝜖1

𝑇 ∙ ∇𝜃
2𝐿 𝜃1 ∙ 𝜖1 + 𝜖2

𝑇 ∙ ∇𝜃
2𝐿 𝜃2 ∙ 𝜖2)]



12/28

Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

̶ To minimize total error barrier,

1. Minimze red term 

2. Maximize blue term

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

4
(𝜖1

𝑇 ∙ ∇𝜃
2𝐿 𝜃1 ∙ 𝜖1 + 𝜖2

𝑇 ∙ ∇𝜃
2𝐿 𝜃2 ∙ 𝜖2)]
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Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

̶ To minimize total error barrier,

1. Minimze red term 

2. Maximize blue term : Increased Hessian → Degraded robustness and quality

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

4
(𝜖1

𝑇 ∙ ∇𝜃
2𝐿 𝜃1 ∙ 𝜖1 + 𝜖2

𝑇 ∙ ∇𝜃
2𝐿 𝜃2 ∙ 𝜖2)]
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Analysis

◼ Error Barrier + Quantization

̶ Applying a second-order Taylor expansion, we obtain:

̶ To minimize total error barrier,

1. Minimze red term : How?

2. Maximize blue term : Increased Hessian → Degraded robustness and quality

max
𝜆∈[0,1]

[𝜖𝜆 ∙ ∇𝜃𝐿 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿 𝜃𝜆 ∙ 𝜖𝜆 −
1

4
(𝜖1

𝑇 ∙ ∇𝜃
2𝐿 𝜃1 ∙ 𝜖1 + 𝜖2

𝑇 ∙ ∇𝜃
2𝐿 𝜃2 ∙ 𝜖2)]
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Analysis

◼ Error Barrier + Quantization

̶ Assuming Hessian of loss 𝐿 is 𝑀-Lipschitz continuous between 𝜃1 and 𝜃2,

̶ Hessian at merged point can be effectively regularized by,

∇𝜃
2𝐿 𝜃𝜆 −

∇𝜃
2𝐿 𝜃1 + ∇𝜃

2𝐿(𝜃2)

2
≤
𝑀 𝜃2 − 𝜃1

2
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Analysis

◼ Error Barrier + Quantization

̶ Assuming Hessian of loss 𝐿 is 𝑀-Lipschitz continuous between 𝜃1 and 𝜃2,

̶ Hessian at merged point can be effectively regularized by,

• Controlling Hessians at the 𝜃1 and 𝜃2
• Minimizing Distance between 𝜃1 and 𝜃2
• This leads to minimization of first-order term, as it also becomes lipschitz continuous

∇𝜃
2𝐿 𝜃𝜆 −

∇𝜃
2𝐿 𝜃1 + ∇𝜃

2𝐿(𝜃2)

2
≤
𝑀 𝜃2 − 𝜃1

2



17/28

Analysis

◼ Error Barrier + Quantization

̶ Assuming Hessian of loss 𝐿 is 𝑀-Lipschitz continuous between 𝜃1 and 𝜃2,

̶ Hessian at merged point can be effectively regularized by,

• Controlling Hessians at the 𝜃1 and 𝜃2
• Minimizing Distance between 𝜃1 and 𝜃2
• This leads to minimization of first-order term, as it also becomes lipschitz continuous

̶ Domain Adaptation Case (∇𝐿1 𝜃2 ≠ 0, ∇𝐿2(𝜃1) ≠ 0)?

• Able to derive same conclusion 

∇𝜃
2𝐿 𝜃𝜆 −

∇𝜃
2𝐿 𝜃1 + ∇𝜃

2𝐿(𝜃2)

2
≤
𝑀 𝜃2 − 𝜃1

2

max
𝜆∈[0,1]

[(𝜖𝜆 + 𝑘 ∙ 𝜖2) ∙ ∇𝜃𝐿1 𝜃𝜆 +
1

2
𝜖𝜆
𝑇 ∙ ∇𝜃

2𝐿1 𝜃𝜆 ∙ 𝜖𝜆 −
1

4
(𝜖1

𝑇 ∙ ∇𝜃
2𝐿 𝜃1 ∙ 𝜖1 + 𝜖2

𝑇 ∙ ∇𝜃
2𝐿 𝜃2 ∙ 𝜖2)]
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Method

◼ Noise-based hessian regularization

̶ Simulates quantization error by introducing additive sampled noise, 𝜖

• Quantized weight : ෝ𝑤 = 𝑐𝑙𝑎𝑚𝑝 ቔ ቓ
𝑤

∆
, −2𝑏−1, 2𝑏−1 − 1 ∙ ∆

− ∆ , 𝑏 denotes step size and bit-width, respectively

• 𝜖 is sampled from 𝑤 − ෝ𝑤

− Quantization noise follows uniform distribution, 𝑈[−
∆

2
,
∆

2
]

ෝ𝑤𝐻𝐷𝑅𝑄 = 𝑤 + 𝜖
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Method

◼ Noise-based hessian regularization

̶ Simulates quantization error by introducing additive sampled noise, 𝜖

• Quantized weight : ෝ𝑤 = 𝑐𝑙𝑎𝑚𝑝 ቔ ቓ
𝑤

∆
, −2𝑏−1, 2𝑏−1 − 1 ∙ ∆

− ∆ , 𝑏 denotes step size and bit-width, respectively

• 𝜖 is sampled from 𝑤 − ෝ𝑤

− Quantization noise follows uniform distribution, 𝑈[−
∆

2
,
∆

2
]

̶ Inherently regularizes Hessian as follows:

ෝ𝑤𝐻𝐷𝑅𝑄 = 𝑤 + 𝜖

𝐸 𝐿 ෝ𝑤 ≈ 𝐸[ෝ𝑤𝐻𝐷𝑅𝑄] = 𝐸[𝑤 + 𝜖]

≈ 𝐸[𝐿 𝑤 + 𝜖 ∙ ∇𝑤𝐿 𝑤 +
1

2
𝜖𝑇 ∙ ∇𝑤

2 𝐿 𝑤 ∙ 𝜖]

≈ 𝐸[𝐿 𝑤 +
1

2
𝜖𝑇 ∙ ∇𝑤

2 𝐿 𝑤 ∙ 𝜖]

First-order term of converged point
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Method

◼ Weight distance regularization

̶ Regularize upper bound derived from triangular inequality

• Without prior information about target domains and weights

̶ Access to source weights?

• Generally models pretrained from source data are adapted and deployed

− Provider must maintain source weight  

𝑤𝑡𝑎𝑟1 −𝑤𝑡𝑎𝑟2 ≤ 𝑤𝑠𝑟𝑐 − 𝑤𝑡𝑎𝑟1 + 𝑤𝑠𝑟𝑐 − 𝑤𝑡𝑎𝑟2

𝑤𝑡𝑎𝑟1
𝑤𝑡𝑎𝑟2

𝑤𝑠𝑟𝑐

𝑤𝑡𝑎𝑟1 −𝑤𝑡𝑎𝑟2

𝑤𝑠𝑟𝑐 − 𝑤𝑡𝑎𝑟1 𝑤𝑠𝑟𝑐 − 𝑤𝑡𝑎𝑟2
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Method

◼ Handling Ambiguity in Rounding Policy

̶ Consider two quantized values being merged,

• 𝐼1 and 𝐼2 : Integer representations 

• ∆1 and ∆2 : Step sizes

̶ If sum of 𝐼1 and 𝐼2 is an odd number, ambiguity in the rounding direction arises

𝐼1 𝐼2𝐼𝑚𝑒𝑟𝑔𝑒𝑑
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Method

◼ Handling Ambiguity in Rounding Policy

̶ Consider two quantized values being merged,

• 𝐼1 and 𝐼2 : Integer representations 

• ∆1 and ∆2 : Step sizes

̶ If sum of 𝐼1 and 𝐼2 is an odd number, ambiguity in the rounding direction arises

̶ Merging in floating point domain?

• Again degenerates when ∆1≈ ∆2

𝐼𝑚𝑒𝑟𝑔𝑒𝑑 = ቞ ቝ
𝐼1 ∙ ∆1 + 𝐼2 ∙ ∆2

∆1 + ∆2
≈ ቞ ቝ

𝐼1 ∙ ∆1 + 𝐼2 ∙ ∆1
2 ∙ ∆1

≈ ඌ ඈ
𝐼1 + 𝐼2
2

𝐼1 𝐼2𝐼𝑚𝑒𝑟𝑔𝑒𝑑
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Method

◼ Handling Ambiguity in Rounding Policy

̶ Our Solution : Employ noise sampling

• Maintains same quantized representation while mitigating ambiguity

• 𝜖 ~ 𝑈[−
∆

2
,
∆

2
]

𝐼𝑚𝑒𝑟𝑔𝑒𝑑 = ቞ ቝ
(𝐼1 ∙ ∆1 + 𝜖1) + (𝐼2 ∙ ∆2 + 𝜖2)

∆1 + ∆2
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Method

◼ Handling Ambiguity in Rounding Policy

̶ Our Solution : Employ noise sampling

• Maintains same quantized representation while mitigating ambiguity

• 𝜖 ~ 𝑈[−
∆

2
,
∆

2
]

̶ Stabilize merge result?

• Utilizing noise, it is important to have stable results with low variance

• Highest Cosine similiary between original interpolation vector and new vectors

𝐼𝑚𝑒𝑟𝑔𝑒𝑑 = ቞ ቝ
(𝐼1 ∙ ∆1 + 𝜖1) + (𝐼2 ∙ ∆2 + 𝜖2)

∆1 + ∆2

𝑤𝑟𝑒𝑗𝑒𝑐𝑡

𝑤𝑎𝑐𝑐𝑒𝑝𝑡

𝑤𝑡𝑎𝑟1
𝑤𝑡𝑎𝑟2

Lower cosine similarity!

Higher cosine similarity!
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Experimental Results

◼ Landscape Visualization

̶ HDRQ guides the network to smoother loss surface

• Direct injection of noise to weights effectively handles local lumps
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Experimental Results

◼ Semantic Segmentation

̶ Quantization results on each target domain are comparable

̶ However when merged, HDRQ outperforms other methods by large margin

Method Bit(W/A) Domain mIOU

FP 32/32
G → C 61.69

G → I 52.06

BRECQ 4/4
G → C 53.67

G → I 45.50

Qdrop 4/4
G → C 58.92

G → I 49.44

HDRQ 4/4
G → C 58.23

G → I 48.68

Method Bit(W/A) Metric mIOU

FP 32/32

C 58.12

I 53.50

H 55.71

BRECQ 4/4

C 29.21

I 35.34

H 31.95

Qdrop 4/4

C 39.91

I 43.37

H 41.54

HDRQ 4/4

C 44.44

I 47.17

H 45.75

Quantization result on each domain

Merging Results
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Experimental Results

◼ Image Classification (Merging 3 networks)

̶ HDRQ outperforms other methods, especially when weights are quantized into low bit

• Bold indicates best one

• Red indicates accuracy gain of over > 1% compared to the second-best

Domain FP Methods W4A8 W4A4 W3A3

R→A,C,P 67.68

BRECQ 64.15 60.95 43.66

QDrop 64.85 66.26 62.99

HDRQ 66.74 66.41 64.70

A→R,C,P 68.80

BRECQ 66.06 62.53 48.04

QDrop 66.83 66.04 64.22

HDRQ 67.80 67.58 65.29

C→R,A,P 75.07

BRECQ 73.22 71.31 56.16

QDrop 73.81 73.25 71.01

HDRQ 74.26 73.58 71.63

P→R,A,C 65.25

BRECQ 64.09 61.92 45.09

QDrop 62.52 63.22 61.24

HDRQ 63.93 63.19 61.55
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Experimental Results

◼ Incremental Ablation Study

̶ Office-Home dataset, W3A3 precision, R→A,C,P setting

̶ Noise-based quantization scheme yields performance gain of 1.22%

̶ Further incorporating weight distance regularization gives additional 0.49% gain

Method Accuracy

Baseline
62.99

(73.14|58.69|83.62)

+ Noise-based Quantization
64.21 ( +1.22% )

(73.42|58.65|83.67)

+ Distance Regularization
64.70 ( +0.49% )

(72.81|58.72|83.33)


