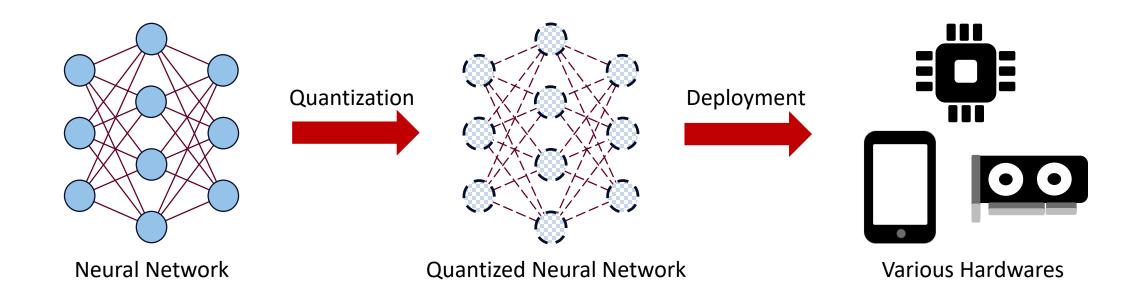


Merge-Friendly Post-Training Quantization for Mutli-Target Domain Adaptation

Juncheol Shin, Minsang Seok, Seonggon Kim, Eunhyeok Park Pohang University of Science and Technology

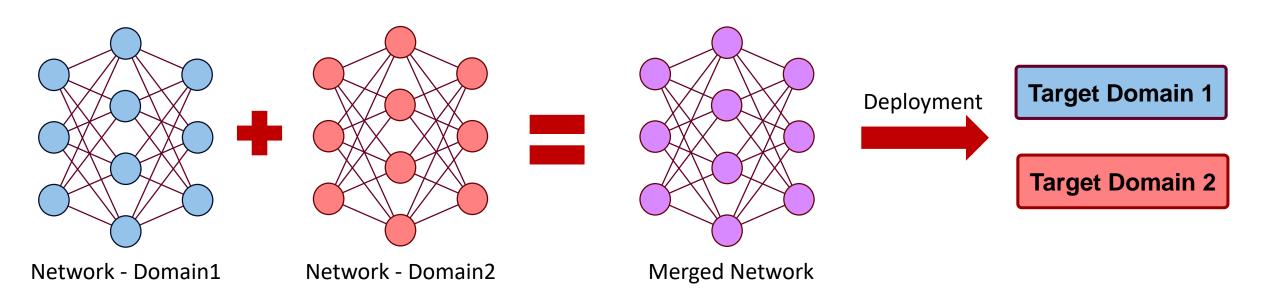
Introduction

- Quantization
 - One of the most widely adopted optimization techniques
 - Activations and weights are stored in a low-precision domain
 - Reduced memory usage & computational requirements



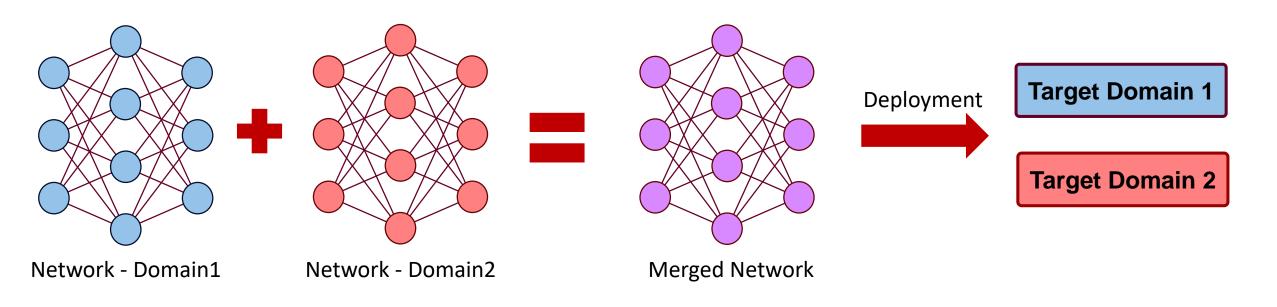
Introduction

- Model Merging
 - Emerging technique to generate model for multiple tasks
 - Recent study revealed even simple weight averaging outperforms other methods in MTDA
 - Shed light to real-time adaptive AI via model merging in edge devices



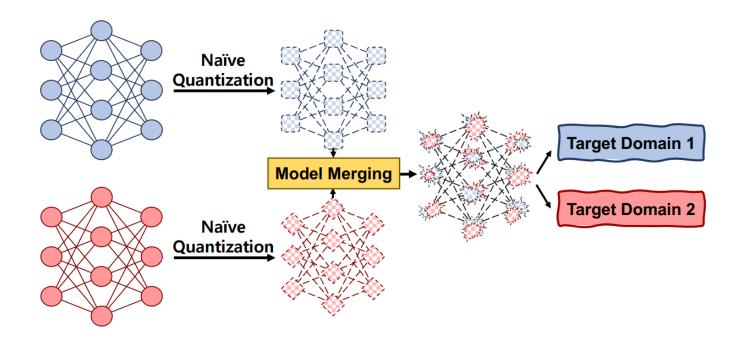
Introduction

- Model Merging
 - Emerging technique to generate model for multiple tasks
 - Recent study revealed even simple weight averaging outperforms other methods in MTDA
 - Shed light to real-time adaptive AI via model merging in edge devices
 - + Quantization?



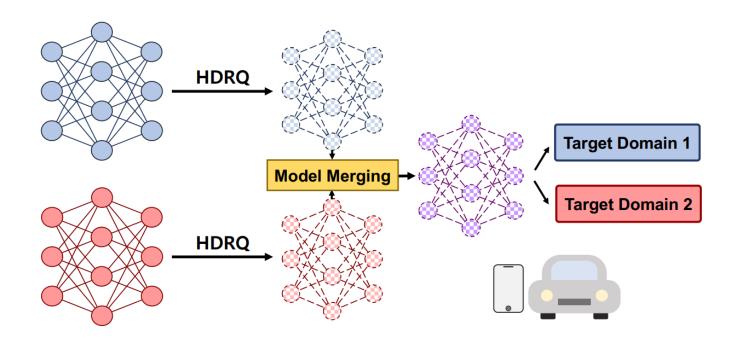
Motivation

- Quantization + Model Merging ?
 - Discretization that is not well aligned with the merging
 - Suboptimal and degraded performance with naïve quantization
 - Little attention has been given to the interplay



Motivation

- HDRQ: Hessian and Distance Regulariziang Quantization
 - Theoretical analysis of quantization's impact on model merging
 - Propose regularization techniques for merge-friendly quantization
 - Noise-sampling-based rounding to handle ambiguity problem



- Error Barrier
 - Quantifies the degree of interpolation-induced performance degradation
 - θ_1 and θ_2 denotes converged weights for each domain
 - θ_{λ} denotes interpolated weight

$$-\theta_{\lambda} = (1-\lambda)\theta_{1} + \lambda\theta_{2}, \ \lambda \in [0,1]$$
 Should be minimized!
$$\max_{\lambda \in [0,1]} [L(\theta_{\lambda}) - \frac{1}{2}(L(\theta_{1}) + L(\theta_{2})]$$

- Error Barrier
 - Quantifies the degree of interpolation-induced performance degradation
 - θ_1 and θ_2 denotes converged weights for each domain
 - θ_{λ} denotes interpolated weight

$$-\theta_{\lambda} = (1-\lambda)\theta_{1} + \lambda\theta_{2}, \ \lambda \in [0,1]$$
 Should be minimized!
$$\max_{\lambda \in [0,1]} [L(\theta_{\lambda}) - \frac{1}{2}(L(\theta_{1}) + L(\theta_{2})]$$

- + Quantization
 - Error induced by quantization can be approximated as additive uniform noise
 - $\epsilon_1 \sim U\left[-\frac{s_1}{2}, \frac{s_1}{2}\right]$ and $\epsilon_2 \sim U\left[-\frac{s_2}{2}, \frac{s_2}{2}\right]$ with quantization step sizes s_1 and s_2

$$\max_{\lambda \in [0,1]} [L(\theta_{\lambda} + \epsilon_{\lambda}) - \frac{1}{2}(L(\theta_{1} + \epsilon_{1}) + L(\theta_{2} + \epsilon_{2})]$$

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

$$\begin{aligned} \max_{\lambda \in [0,1]} \left[L(\theta_{\lambda}) - \frac{1}{2} (L(\theta_{1}) + L(\theta_{2})) + \\ \max_{\lambda \in [0,1]} \left[\epsilon_{\lambda} \cdot \nabla_{\theta} L(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{2} (\epsilon_{1} \cdot \nabla_{\theta} L(\theta_{1}) + \frac{1}{2} \epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \\ \epsilon_{2} \cdot \nabla_{\theta} L(\theta_{2}) + \frac{1}{2} \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2} \right) \right] \end{aligned}$$

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

First-order term of converged point

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

$$\max_{\lambda \in [0,1]} [\epsilon_{\lambda} \cdot \nabla_{\theta} L(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{4} (\epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2})]$$

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

$$\max_{\lambda \in [0,1]} \left[\epsilon_{\lambda} \cdot \nabla_{\theta} L(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{4} (\epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2}) \right]$$

- To minimize total error barrier,
 - Minimze red term
 - 2. Maximize blue term

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

$$\max_{\lambda \in [0,1]} \left[\epsilon_{\lambda} \cdot \nabla_{\theta} L(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{4} (\epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2}) \right]$$

- To minimize total error barrier,
 - 1. Minimze red term
 - 2. Maximize blue term: Increased Hessian → Degraded robustness and quality

- Error Barrier + Quantization
 - Applying a second-order Taylor expansion, we obtain:

$$\max_{\lambda \in [0,1]} \left[\epsilon_{\lambda} \cdot \nabla_{\theta} L(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{4} (\epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2}) \right]$$

- To minimize total error barrier
 - 1. Minimze red term: How?
 - 2. Maximize blue term: Increased Hessian → Degraded robustness and quality

- Error Barrier + Quantization
 - Assuming Hessian of loss L is M-Lipschitz continuous between θ_1 and θ_2 ,

$$\left| \nabla_{\theta}^2 L(\theta_{\lambda}) - \frac{\nabla_{\theta}^2 L(\theta_1) + \nabla_{\theta}^2 L(\theta_2)}{2} \right| \le \frac{M \|\theta_2 - \theta_1\|}{2}$$

Hessian at merged point can be effectively regularized by,

- Error Barrier + Quantization
 - Assuming Hessian of loss L is M-Lipschitz continuous between θ_1 and θ_2 ,

$$\left| \nabla_{\theta}^{2} L(\theta_{\lambda}) - \frac{\nabla_{\theta}^{2} L(\theta_{1}) + \nabla_{\theta}^{2} L(\theta_{2})}{2} \right| \leq \frac{M \|\theta_{2} - \theta_{1}\|}{2}$$

- Hessian at merged point can be effectively regularized by,
 - Controlling Hessians at the $heta_1$ and $heta_2$
 - Minimizing Distance between θ_1 and θ_2
 - This leads to minimization of first-order term, as it also becomes lipschitz continuous

- Error Barrier + Quantization
 - Assuming Hessian of loss L is M-Lipschitz continuous between θ_1 and θ_2 ,

$$\left| \nabla_{\theta}^{2} L(\theta_{\lambda}) - \frac{\nabla_{\theta}^{2} L(\theta_{1}) + \nabla_{\theta}^{2} L(\theta_{2})}{2} \right| \leq \frac{M \|\theta_{2} - \theta_{1}\|}{2}$$

- Hessian at merged point can be effectively regularized by,
 - Controlling Hessians at the θ_1 and θ_2
 - Minimizing Distance between θ_1 and θ_2
 - This leads to minimization of first-order term, as it also becomes lipschitz continuous
- Domain Adaptation Case $(\nabla L_1(\theta_2) \neq 0, \nabla L_2(\theta_1) \neq 0)$?
 - Able to derive same conclusion

$$\max_{\lambda \in [0,1]} \left[(\epsilon_{\lambda} + k \cdot \epsilon_{2}) \cdot \nabla_{\theta} L_{1}(\theta_{\lambda}) + \frac{1}{2} \epsilon_{\lambda}^{T} \cdot \nabla_{\theta}^{2} L_{1}(\theta_{\lambda}) \cdot \epsilon_{\lambda} - \frac{1}{4} (\epsilon_{1}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{1}) \cdot \epsilon_{1} + \epsilon_{2}^{T} \cdot \nabla_{\theta}^{2} L(\theta_{2}) \cdot \epsilon_{2}) \right]$$

- Noise-based hessian regularization
 - Simulates quantization error by introducing additive sampled noise, ϵ
 - Quantized weight : $\widehat{w} = clamp\left(\left\lfloor \frac{w}{\Delta} \right\rfloor, -2^{b-1}, 2^{b-1} 1\right) \cdot \Delta$
 - $-\Delta$, b denotes step size and bit-width, respectively
 - ϵ is sampled from $w \widehat{w}$
 - Quantization noise follows uniform distribution, $U[-\frac{\Delta}{2}, \frac{\Delta}{2}]$

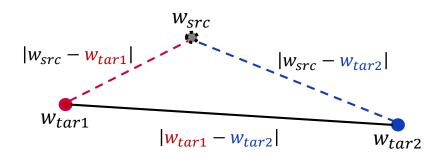
$$\widehat{w}_{HDRQ} = w + \epsilon$$

- Noise-based hessian regularization
 - Simulates quantization error by introducing additive sampled noise, ϵ
 - Quantized weight : $\widehat{w} = clamp\left(\left\lfloor \frac{w}{\Delta} \right\rfloor, -2^{b-1}, 2^{b-1} 1\right) \cdot \Delta$
 - $-\Delta$, b denotes step size and bit-width, respectively
 - ϵ is sampled from $w \hat{w}$
 - Quantization noise follows uniform distribution, $U[-\frac{\Delta}{2},\frac{\Delta}{2}]$ $\widehat{w}_{HDRO}=w+\epsilon$
 - Inherently regularizes Hessian as follows:

$$\begin{split} E[L(\widehat{w})] &\approx E[\widehat{w}_{HDRQ}] = E[w + \epsilon] \\ &\approx E[L(w) + \epsilon \cdot \nabla_w L(w) + \frac{1}{2} \epsilon^T \cdot \nabla_w^2 L(w) \cdot \epsilon] \\ &\approx E[L(w) + \frac{1}{2} \epsilon^T \cdot \nabla_w^2 L(w) \cdot \epsilon] \end{split}$$

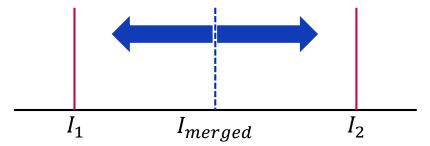
- Weight distance regularization
 - Regularize upper bound derived from triangular inequality
 - Without prior information about target domains and weights

$$|w_{tar1} - w_{tar2}| \le |w_{src} - w_{tar1}| + |w_{src} - w_{tar2}|$$

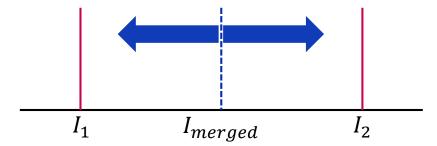


- Access to source weights?
 - Generally models pretrained from source data are adapted and deployed
 - Provider must maintain source weight

- Handling Ambiguity in Rounding Policy
 - Consider two quantized values being merged,
 - I_1 and I_2 : Integer representations
 - Δ_1 and Δ_2 : Step sizes
 - If sum of I_1 and I_2 is an odd number, ambiguity in the rounding direction arises



- Handling Ambiguity in Rounding Policy
 - Consider two quantized values being merged,
 - I_1 and I_2 : Integer representations
 - Δ_1 and Δ_2 : Step sizes
 - If sum of I_1 and I_2 is an odd number, ambiguity in the rounding direction arises



- Merging in floating point domain?
 - Again degenerates when $\Delta_1 \approx \Delta_2$

$$I_{merged} = \left[\frac{I_1 \cdot \Delta_1 + I_2 \cdot \Delta_2}{\Delta_1 + \Delta_2} \right] \approx \left[\frac{I_1 \cdot \Delta_1 + I_2 \cdot \Delta_1}{2 \cdot \Delta_1} \right] \approx \left[\frac{I_1 + I_2}{2} \right]$$

- Handling Ambiguity in Rounding Policy
 - Our Solution : Employ noise sampling
 - Maintains same quantized representation while mitigating ambiguity

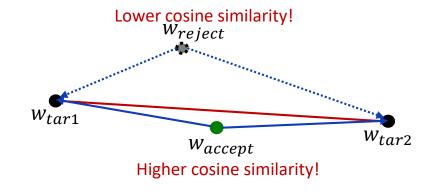
•
$$\epsilon \sim U[-\frac{\Delta}{2}, \frac{\Delta}{2}]$$

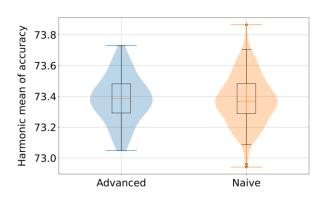
$$I_{merged} = \left| \frac{(I_1 \cdot \Delta_1 + \epsilon_1) + (I_2 \cdot \Delta_2 + \epsilon_2)}{\Delta_1 + \Delta_2} \right|$$

- Handling Ambiguity in Rounding Policy
 - Our Solution : Employ noise sampling
 - Maintains same quantized representation while mitigating ambiguity
 - $\epsilon \sim U[-\frac{\Delta}{2}, \frac{\Delta}{2}]$

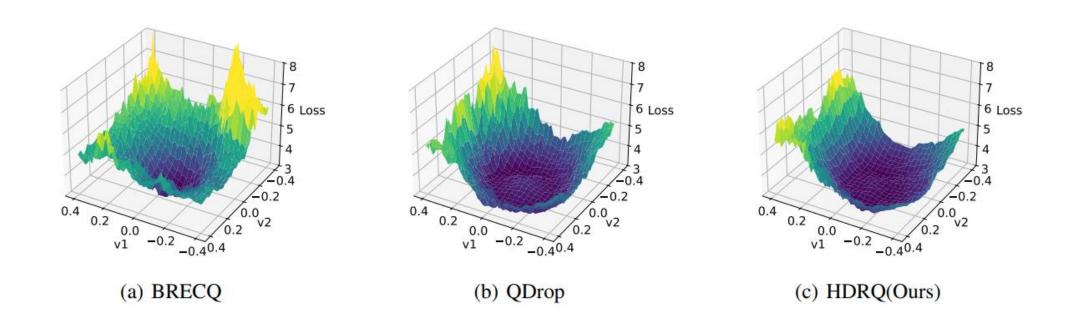
$$I_{merged} = \left| \frac{(I_1 \cdot \Delta_1 + \epsilon_1) + (I_2 \cdot \Delta_2 + \epsilon_2)}{\Delta_1 + \Delta_2} \right|$$

- Stabilize merge result?
 - Utilizing noise, it is important to have stable results with low variance
 - Highest Cosine similiary between original interpolation vector and new vectors





- Landscape Visualization
 - HDRQ guides the network to smoother loss surface
 - Direct injection of noise to weights effectively handles local lumps



- Semantic Segmentation
 - Quantization results on each target domain are comparable
 - However when merged, HDRQ outperforms other methods by large margin

Method	Bit(W/A)	Domain	mIOU
FP	32/32	$G \rightarrow C$	61.69
		G → I	52.06
BRECQ	4/4	$G \rightarrow C$	53.67
		G → I	45.50
Qdrop	4/4	$G \rightarrow C$	58.92
		G → I	49.44
HDRQ	4/4	$G \rightarrow C$	58.23
		G → I	48.68

Quantization result on each domain

Method	Bit(W/A)	Metric	mIOU
FP	32/32	С	58.12
		1	53.50
		Н	55.71
BRECQ	4/4	С	29.21
		1	35.34
		Н	31.95
Qdrop	4/4	С	39.91
		1	43.37
		Н	41.54
HDRQ	4/4	С	44.44
		ı	47.17
		Н	45.75

- Image Classification (Merging 3 networks)
 - HDRQ outperforms other methods, especially when weights are quantized into low bit
 - **Bold** indicates best one
 - Red indicates accuracy gain of over > 1% compared to the second-best

Domain	FP	Methods	W4A8	W4A4	W3A3
R→A,C,P	67.68	BRECQ	64.15	60.95	43.66
		QDrop	64.85	66.26	62.99
		HDRQ	66.74	66.41	64.70
A→R,C,P	68.80	BRECQ	66.06	62.53	48.04
		QDrop	66.83	66.04	64.22
		HDRQ	67.80	67.58	65.29
C→R,A,P	75.07	BRECQ	73.22	71.31	56.16
		QDrop	73.81	73.25	71.01
		HDRQ	74.26	73.58	71.63
P→R,A,C	65.25	BRECQ	64.09	61.92	45.09
		QDrop	62.52	63.22	61.24
		HDRQ	63.93	63.19	61.55

- Incremental Ablation Study
 - Office-Home dataset, W3A3 precision, $R \rightarrow A$, C, P setting
 - Noise-based quantization scheme yields performance gain of 1.22%
 - Further incorporating weight distance regularization gives additional 0.49% gain

Method	Accuracy	
Baseline	62.99 (73.14 58.69 83.62)	
+ Noise-based Quantization	64.21 (+1.22%) (73.42 58.65 83.67)	
+ Distance Regularization	64.70 (+ <mark>0.49%</mark>) (72.81 58.72 83.33)	

