POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

International Conference
On Machine Learning

Merge-Friendly Post-Training Quantization for
Mutli-Target Domain Adaptation

Juncheol Shin, Minsang Seok, Seonggon Kim, Eunhyeok Park
Pohang University of Science and Technology

rPoOsSTEeCH



Introduction

m Quantization
— One of the most widely adopted optimization techniques
— Activations and weights are stored in a low-precision domain
e Reduced memory usage & computational requirements
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Introduction

m Model Merging

— Emerging technique to generate model for multiple tasks

— Recent study revealed even simple weight averaging outperforms other methods in MTDA

e Shed light to real-time adaptive Al via model merging in edge devices
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Introduction

m Model Merging

— Emerging technique to generate model for multiple tasks

— Recent study revealed even simple weight averaging outperforms other methods in MTDA

e Shed light to real-time adaptive Al via model merging in edge devices

— + Quantization?

Network - Domainl
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Motivation

m Quantization + Model Merging ?
— Discretization that is not well aligned with the merging
e Suboptimal and degraded performance with naive quantization

— Little attention has been given to the interplay
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Motivation

m HDRQ : Hessian and Distance Regulariziang Quantization

— Theoretical analysis of quantization’s impact on model merging

— Propose regularization techniques for merge-friendly quantization
— Noise-sampling-based rounding to handle ambiguity problem
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Analysis

m Error Barrier
— Quantifies the degree of interpolation-induced performance degradation
e 0, and 6, denotes converged weights for each domain
e 0, denotes interpolated weight

_ 0, = (1 - ), + A6, A€[0,1] *hould be i .
eq!
max. [L(6;) — 5 (L(91) + L(6;)]
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Analysis

m Error Barrier
— Quantifies the degree of interpolation-induced performance degradation
e 0, and 6, denotes converged weights for each domain

e 0, denotes interpolated weight
-0, =(1—-21)6, +16,, 1€]0,1] Should p,

Minimizeq !

max. [L(6;) — 5 (L(91) + L(6;)]

m + Quantization

— Error induced by quantization can be approximated as additive uniform noise

~U [—%% and e,~ U [—S;ZS;Z] with quantization step sizes s; and s,

1
Aren[(a)l)i [L(O; +€;) —= (L(91 +€1) + L(O + €,)]
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Analysis

m Error Barrier + Quantization

— Applying a second-order Taylor expansion, we obtain:

1
/‘lrél[g,):(L] L(6;) — > (L(61) +L(B,)] +

_ 1 1 1
Jmax [& - VoL (62) + €3 - V5L(62) - €1 =5 (€1 - VoL(61) + 5 €1 - VL(81) - €1 +

1
€2+ VoL (62) +5 €7 - V5L(62) - €)]
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Analysis

m Error Barrier + Quantization

— Applying a second-order Taylor expansion, we obtain:

1 Assuming zero error barrier for simplicity

A€[0,1] 2 1 2

1
max [€; - VoL(6)) + 5 €3 - VaL(6) - € ——(-q—‘?‘a*é@ﬁ-+ S €l VoL (61) - € +
A€[0,1] 2 First-order term of
converged point

1
_EzT ' VgL(Qz) * €2)]

TS+ 5

First-order term of
converged point
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Analysis

m Error Barrier + Quantization

— Applying a second-order Taylor expansion, we obtain:

1 1
Agl[g%[fa - VoL(6,) + EE;{ -VgL(67) - €5 — 2 (€] - VgL(01) - €1 + €5 - V5L(67) - €2)]
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Analysis

m Error Barrier + Quantization

— Applying a second-order Taylor expansion, we obtain:

— To minimize total error barrier,

max |
A€[0,1]

1. Minimze red term
2. Maximize Hhlue term
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Analysis

m Error Barrier + Quantization
— Applying a second-order Taylor expansion, we obtain:

1 1
Afél[gﬁ][e'a - VoL(6,) + EE{ -VgL(6y) - €5 — Z(ElT - VgL(61) - €1 + €5 - VoL(6y) - €2)]

— To minimize total error barrier,
1. Minimze term
2—Maximize- +term : Increased Hessian - Degraded robustness and quality
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Analysis

m Error Barrier + Quantization

— Applying a second-order Taylor expansion, we obtain:

max

1
A% EA VoL(62) +5 €1 - VoL (6n) - &= Z(ElT - VgL(01) - € + €3 - V5L(67) - €3)]

— To minimize total error barrie
1. Minimze term : How?
2—Maximize- +term : Increased Hessian - Degraded robustness and quality
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Analysis

m Error Barrier + Quantization
— Assuming Hessian of loss L is M-Lipschitz continuous between 6 and 6,,

VGL(61) + V4L(85)| _ MII6; — 6. |
2 N 2

IV§L(9,1)‘ —

— Hessian at merged point can be effectively regularized by,
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Analysis

m Error Barrier + Quantization
— Assuming Hessian of loss L is M-Lipschitz continuous between 6 and 6,,

V5L(6,) + V5L(6, 162 — 64|
I 6 ( ).) 2

2
— Hessian at merged point can be effectively regularized by,

<

e Controlling Hessians at the 8, and 6,
e Minimizing Distance between 6; and 6,
e This leads to minimization of first-order term, as it also becomes lipschitz continuous
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Analysis

m Error Barrier + Quantization

— Assuming Hessian of loss L is M-Lipschitz continuous between 6 and 6,,

‘VZLH +v2L0j 0, —6
Ing(HA)‘_ 0 ( 1) : 0 ( 2 || 2 1”

2
— Hessian at merged point can be effectively regularized by,

<

e Controlling Hessians at the 8, and 6,

e Minimizing Distance between 6; and 6,

e This leads to minimization of first-order term, as it also becomes lipschitz continuous
— Domain Adaptation Case (VL,(8,) # 0, VL,(68;) # 0)?

e Able to derive same conclusion

1 1
Aren[(e)ui][(e;t +k - €)) - VoL1(8y) + Ee} VeL1(68)) - € — 7 (el - VEL(0,) - €, + €] - VEL(O,) - ;)]

POSTRECH 17/28



Method

m Noise-based hessian regularization

— Simulates quantization error by introducing additive sampled noise, €

e Quantized weight : w = clamp ({ﬂ ,—2b=1 2b-1 _ 1) A
— A, b denotes step size and bit-width, respectively

e cissampled fromw — w

- . . . A A
— Quantization noise follows uniform distribution, U[— E’E]

WHDRQ =Ww-+Ee€
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Method

m Noise-based hessian regularization

— Simulates quantization error by introducing additive sampled noise, €

e Quantized weight : w = clamp ({ﬂ ,—2b=1 2b-1 _ 1) A
— A, b denotes step size and bit-width, respectively

e cissampled fromw — w

- : : T A A
— Quantization noise follows uniform distribution, U[— E’E]
WHDRQ =Ww-+Ee€
— Inherently regularizes Hessian as follows:
E[L(W)] = E[Wypro] = E[w + €]
First-order term of converged point 1

~ E[L(W) et EET -V, L(w) - €]

1
~ E[L(w) + EET - VZ,L(w) - €]
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Method

m Weight distance regularization
— Regularize upper bound derived from triangular inequality
e Without prior information about target domains and weights

|Wtar1 - Wtarzl < |Wsrc - Wtarll + |Wsrc - Wtarzl

WST'C

| o
w — W - ~
sre tarl/ -7 S< Wsre — Wearz|
~
” g - = ~ ~
F ~ ~
~ ~
Wtari —
Wtar1t — Wear2 Wtarz

— Access to source weights?

e Generally models pretrained from source data are adapted and deployed
— Provider must maintain source weight
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Method

m Handling Ambiguity in Rounding Policy
— Consider two quantized values being merged,
e [, and I, : Integer representations
e Ay and A, : Step sizes
— If sum of I; and I, is an odd number, ambiguity in the rounding direction arises
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Method

m Handling Ambiguity in Rounding Policy
— Consider two quantized values being merged,
e [, and I, : Integer representations
e Ay and A, : Step sizes
— If sum of I; and I, is an odd number, ambiguity in the rounding direction arises

— Merging in floating point domain?
e Again degenerates when A;= A,

I _ 11.A1+12.A2 - Il.Al-I_IZ.Al ~{11+12}
merged A + A, 2 Ay 2
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Method

m Handling Ambiguity in Rounding Policy
— Our Solution : Employ noise sampling

e Maintains same quantized representation while mitigating ambiguity

A A
e~ U3l

U1 A+ e)+ Uz Ayt €)
Imerged — Al + Az

rPOsSTECH 23/28



Method

m Handling Ambiguity in Rounding Policy
— Our Solution : Employ noise sampling

e Maintains same quantized representation while mitigating ambiguity

A A
e~ Ul

I U1 A+ e) + (L0 +€r)
merged Al + Az
— Stabilize merge result?
e Utilizing noise, it is important to have stable results with low variance
e Highest Cosine similiary between original interpolation vector and new vectors

Lower cosine similarity!
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Experimental Results

m Landscape Visualization
— HDRQ guides the network to smoother loss surface
e Direct injection of noise to weights effectively handles local lumps

(a) BRECQ (c) HDRQ(Ours)
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Experimental Results

m Semantic Segmentation

— Quantization results on each target domain are comparable

— However when merged, HDRQ outperforms other methods by large margin

Method Bit(W/A) Domain mIOU
G—>C 61.69
FP 32/32

G-I 52.06
G—>C 53.67

BRECQ 4/4
G-I 45.50
G->C 58.92

Qdrop 4/4
G-I 49.44
G->C 58.23

HDRQ 4/4
G-I 48.68

Quantization result on each domain
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Method Bit(W/A) Metric mIOU
C 58.12

FP 32/32 I 53.50

H 55.71

C 29.21

BRECQ 4/4 I 35.34
H 31.95

C 39.91

Qdrop 4/4 I 43.37
H 41.54

C 44.44

HDRQ 4/4 I 47.17
H 45.75

Merging Results
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Experimental Results

m |Image Classification (Merging 3 networks)

— HDRQ outperforms other methods, especially when weights are quantized into low bit

e Bold indicates best one

e Red indicates accuracy gain of over > 1% compared to the second-best
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Domain FP Methods W4A8 W4A4 W3A3
BRECQ 64.15 60.95 43.66
R—->A,C,P 67.68 QDrop 64.85 66.26 62.99
HDRQ 66.74 66.41 64.70
BRECQ 66.06 62.53 48.04
A->R,C,P 68.80 QDrop 66.83 66.04 64.22
HDRQ 67.80 67.58 65.29
BRECQ 73.22 71.31 56.16
C->RA,P 75.07 QDrop 73.81 73.25 71.01
HDRQ 74.26 73.58 71.63
BRECQ 64.09 61.92 45.09
P->R,A,C 65.25 QDrop 62.52 63.22 61.24
HDRQ 63.93 63.19 61.55
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Experimental Results

m Incremental Ablation Study
— Office-Home dataset, W3A3 precision, R>A,C,P setting

— Noise-based quantization scheme yields performance gain of 1.22%
— Further incorporating weight distance regularization gives additional 0.49% gain
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Method

Accuracy

Baseline

62.99
(73.14|58.69|83.62)

+ Noise-based Quantization

64.21 (+1.22% )
(73.42|58.65|83.67)

+ Distance Regularization

64.70 (+0.49% )
(72.81|58.72|83.33)
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