$\infty ext{-VIDEO}$: A Training-Free Approach to Long Video Understanding via

Continuous-Time Memory Consolidation

Saul Santos¹ António Farinhas¹ Daniel McNamee² André F. T. Martins^{1,3}

¹Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon ELLIS Unit, Portugal ²Neuroscience Programme, Champalimaud Research, Lisbon, Portugal ³Unbabel, Lisbon, Portugal

Outline

- Problem: Long videos exceed model context; subsampling loses critical details.
- Inspiration: Human memory consolidates key events over time.
- Goal: Understanding full videos in one pass without missing important content.
- Approach: Adapt ∞ -former [1] to video via continuous-time visual memory—no retraining needed.
- Our method shows improved performance on video QA tasks with Video-LLaMA and VideoChat2.

From Discrete to Continuous Attention

Discrete attention uses tokens; we instead model input as a continuous signal x(t) on [0,1], expressed via basis functions $\psi(t)$:

$$oldsymbol{x}(t) = oldsymbol{B}^ op oldsymbol{\psi}(t)$$

This allows using a probability density p(t) instead of softmax. B is computed via Ridge regression.

Continuous Attention and Long-Term Memory (LTM)

Project the continuous input $x(t) = B^{\top} \psi(t)$ to get keys and values:

$$oldsymbol{k}^h(t) = (oldsymbol{W}^h_{\mathcal{K}})^ op oldsymbol{x}(t) = (oldsymbol{W}^h_{\mathcal{K}})^ op oldsymbol{B}^ op oldsymbol{\psi}(t), \ oldsymbol{v}^h(t) = (oldsymbol{W}^h_{\mathcal{V}})^ op oldsymbol{x}(t) = (oldsymbol{W}^h_{\mathcal{V}})^ op oldsymbol{B}^ op oldsymbol{\psi}(t),$$

Queries: $Q^h = [q_1^\top, \dots, q_R^\top] = YW_Q^h$. Similarity and Gibbs PDF:

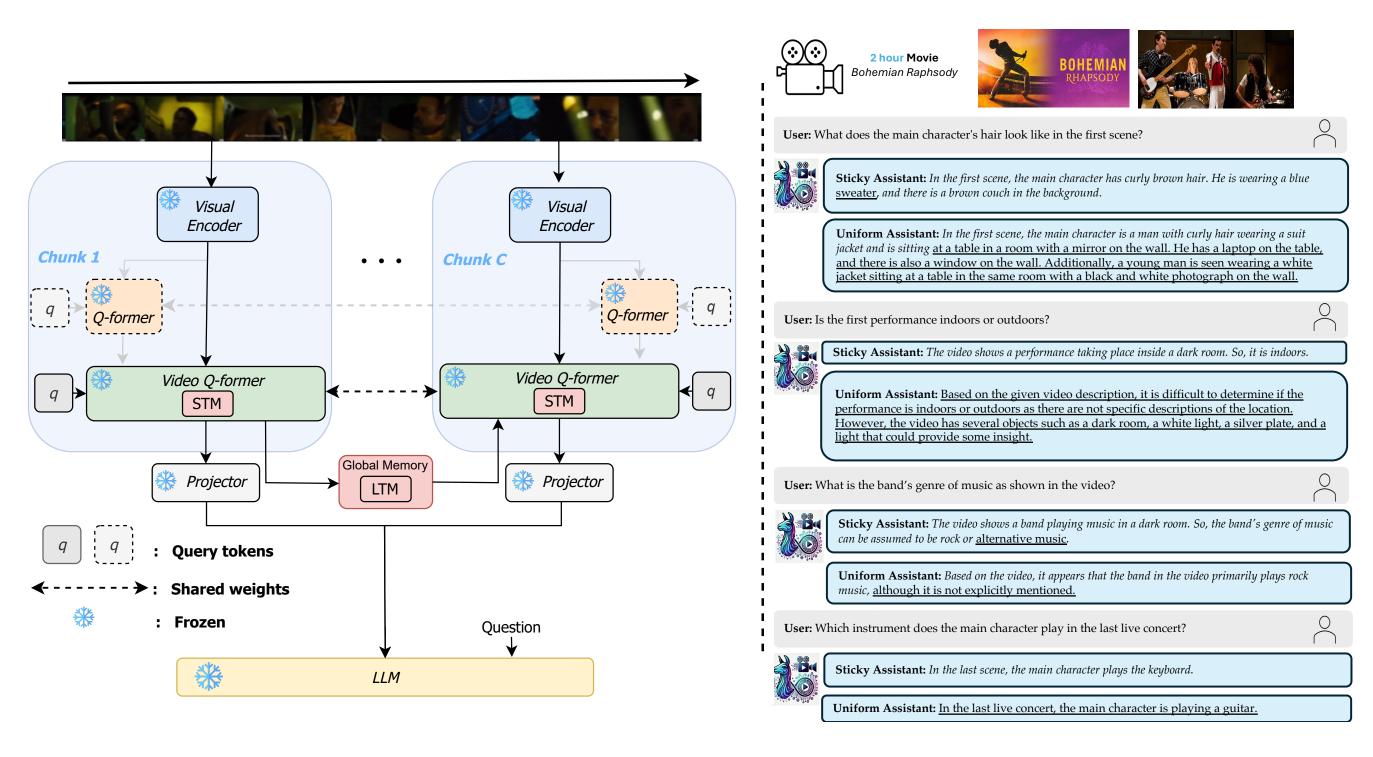
$$s_i^h(t) = oldsymbol{q}_i^ op oldsymbol{k}^h(t), \qquad p_i^h(t) = rac{e^{s_i^h(t)}}{\int e^{s_i^h(t')} dt'}$$

Attention via expectation:

$$Z_i^h = \mathbb{E}_{p_i^h}[oldsymbol{v}^h(t)] = (oldsymbol{W}_V^h)^ op oldsymbol{B}^ op \int p_i^h(t) \psi(t) dt$$

Final LTM: concatenate heads and apply output projection.

Overall Architecture



The final output of our modified video Q-former layer is a weighted average of the standard Short-Term Memory (STM) attention and our new LTM context:

$$Z = \alpha Z_{\mathsf{STM}} + (1 - \alpha) Z_{\mathsf{LTM}}$$

To feed a fixed-size representation to the LLM, we compute a running average of the projected video token embeddings E_c from each of the C chunks:

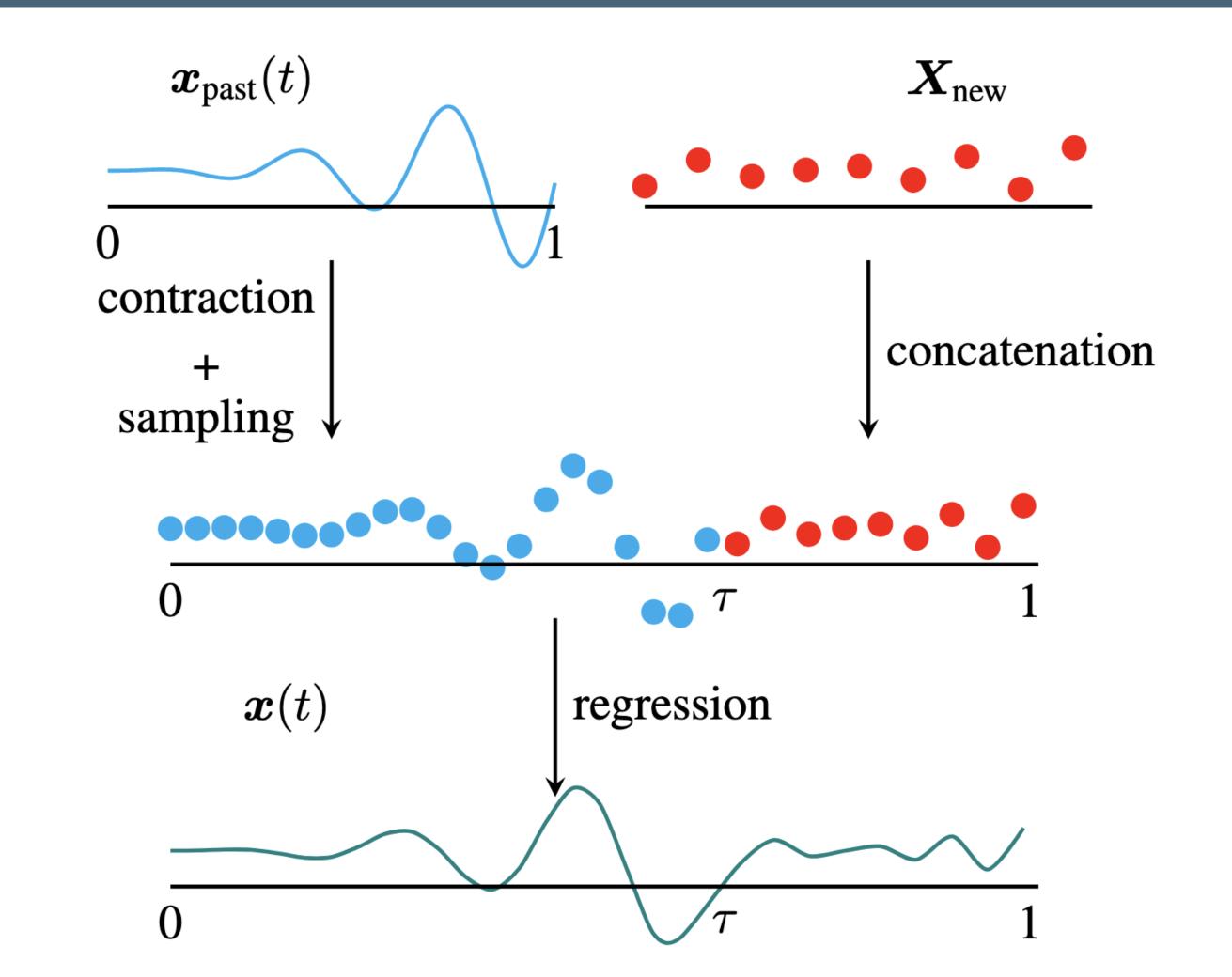
$$\bar{\mathbf{E}}_c = \frac{C - 1}{C} \bar{\mathbf{E}}_{c-1} + \frac{1}{C} \mathbf{E}_c$$

Continuous-Time Memory Consolidation

The LTM is updated for each new chunk in FOUR steps: As new video chunks arrive, the LTM is updated:

- Sample: Evaluate the current LTM signal x(t) at T locations.
- **Contract:** The past context is mapped to a smaller interval $[0, \tau]$, inducing a "forgetting" factor.
- Concatenate: The contracted past context is combined with the new chunk's context.
- Regress: A new continuous signal $x_{new}(t)$ is fit to the combined context over [0, 1].
- Continuous Attention: Apply continuous attention over $x_{\text{new}}(t)$.

Continuous-Time Memory Consolidation



Sticky Memories

Motivation: Uniform memory allocation is inefficient. **Idea:** Prioritize relevant regions by allocating memory proportionally, inspired by resource-based models [2, 3, 4].

Analogy: Mimics *non-local replay* in the brain, where past events are selectively reactivated [5, 6].

Long-Term Open-Ended Question Answering

Method	LLM	#Frames	Medium	Long	Avg
Video-LLaVA	Vicuna-7B	8	38.0	36.2	39.9
ShareGPT4Video 8B	_	16	36.3	35.0	39.9
Chat-UniVi-v1.5	Vicuna-7B	64	40.3	35.8	40.6
Qwen-VL-Chat	Qwen-7B	4	38.7	37.8	41.1
VideoChat2	Mistral-7B	32	37.9	38.0	42.1
∞ -VideoChat2 (no LTM)	Mistral-7B	128	39.6	38.8	42.3
∞ -VideoChat2 (uniform)	Mistral-7B	128	40.0	38.8	42.4
∞ -VideoChat2 (sticky)	Mistral-7B	128	40.2	38.9	42.4

Our sticky memory method yields gains over baselines on Video MME!

Long-Term Open-Ended Question Answering

Method	LLM	Number of Frames	Accuracy	Score	CI	DO	Cl
Video Chat	Vicuna-7B	32	61.0	3.34	3.26	3.20	3.38
Video-ChatGPT	Vicuna-7B	100	44.2	2.71	2.48	2.78	3.03
Video LLaMA-Based Models							
Video LLaMA	Vicuna-7B	32	51.4	3.10	3.30	2.53	3.28
MovieChat	Vicuna-7B	2048	67.8	3.81	3.32	3.28	3.44
MovieChat+	Vicuna-7B	2048	66.4	3.67	3.70	3.30	3.62
∞ -Video LLaMA (no LTM)	Vicuna-7B	2048	68.0	3.76	3.72	3.33	3.7
∞ -Video LLaMA (uniform)	Vicuna-7B	2048	66.5	3.69	3.60	3.31	3.58
∞ -Video LLaMA (sticky)	Vicuna-7B	2048	72.2	3.88	3.89	3.47	3.79
∞ -Video LLaMA (no STM uniform)	Vicuna-7B	2048	62.4	3.75	3.36	3.38	3.52
∞ -Video LLaMA (no STM sticky)	Vicuna-7B	2048	59.2	3.68	3.30	3.30	3.44
VideoChat2-Based Models							
VideoChat2	Mistral-7B	16	62.2	3.72	3.46	3.60	3.69
∞ -VideoChat2 (no LTM)	Mistral-7B	128	63.9	3.74	3.54	3.60	3.73
∞ -VideoChat2 (uniform)	Mistral-7B	128	64.1	3.73	3.54	3.60	3.75
∞ -VideoChat2 (sticky)	Mistral-7B	128	63.9	3.74	3.55	3.63	3.74
∞ -VideoChat2 (no STM uniform)	Mistral-7B	128	65.7	3.78	3.65	3.60	3.84
∞ -VideoChat2 (no STM sticky)	Mistral-7B	128	<u>66.5</u>	<u>3.85</u>	<u>3.71</u>	<u>3.68</u>	3.90

 ∞ -Video with sticky memories achieves the best results on MovieChat-1K, outperforming all baselines!

Qualitative Analysis

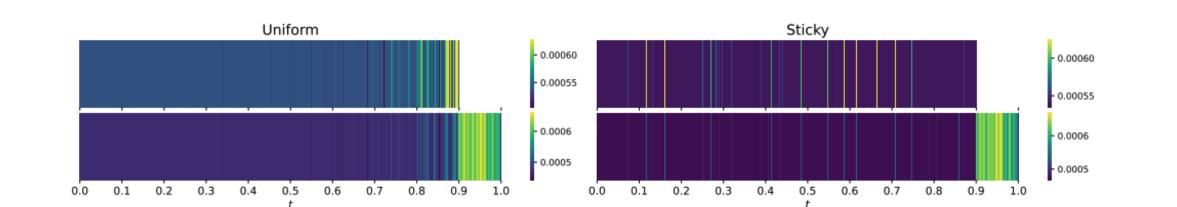


Figure 3. (Top) LTM attention density on the $[0, \tau]$ interval for the *Interstellar* trailer, using sticky memories in the final chunk of the ∞ -Video LLaMA video Q-former's last layer. (Bottom) The same attention density map, extended over the full t interval.

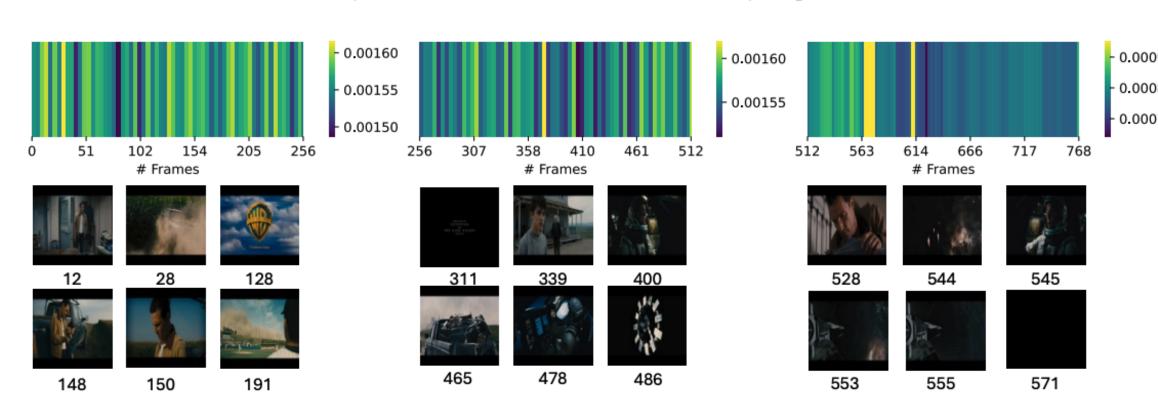


Figure 4. Highest continuous attention density frames selected using sticky memories in the Interstellar trailer for ∞ -Video LLaMA across 3 chunks. (Left) Interval: $[0, \tau^2]$. (Middle) Interval: $[\tau^2, \tau]$. (Right) Interval: $[\tau, \tau]$.

References

- [1] Pedro Henrique Martins, Zita Marinho, and André FT Martins. ∞ -former: Infinite memory transformer. In *Proc. ACL*, 2022.
- [2] W. Ma, M. Husain, and P. Bays. Changing concepts of working memory. *Nature Neuroscience*, 17: 347–356, 2014. doi: 10.1038/nn.3655. URL https://doi.org/10.1038/nn.3655.
- [3] Oliver Hardt, Einar O Einarsson, and Karim Nader. A bridge over troubled water: reconsolidation as a link between cognitive and neuroscientific memory research traditions. *Annual Review of Psychology*, 61:141–167, 2010. doi: 10.1146/annurev.psych.093008.100455.
- [4] Yadin Dudai, Avi Karni, and Jan Born. The consolidation and transformation of memory. *Neuron*, 88:20–32, 2015.
- [5] Margaret F Carr, Shantanu P Jadhav, and Loren M Frank. Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. *Nature Neuroscience*, 14:147–153, 2011.
- [6] Daniel C McNamee. The generative neural microdynamics of cognitive processing. Current Opinion in Neurobiology, 85:102855, 2024. doi: $10.1016/\mathrm{j.conb.}2024.102855$. Epub 2024 Feb 29.