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. Background

Graph Convolutional Networks (GCNs) Message passing on graphs
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{ GCNs excel at handling graph-structured data, which relies most on their message passing mechanism J
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. Motivation

Effect of message passing

Labeled node
° ®
Labeled
Labeled n \./
\ ®
® Lony = CE(fy(X),Y) == > ya(log fir)
/ Loon = CE(Af§(X),Y) = - _ D vir(log _
@
DNN: One-to-one supervision GCN: One-to-many supervision
Effect of Message Passing
Lpnn = CE(fo(X),Y) = — §  yir(log fir) .
, Message-passing of GCN makes unlabeled
1€V, kel
~ nodes can utilizing the label information.
Lcon = CE(Afp(X),Y) = — E yir(lo
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. Motivation

Impact of label on unlabeled nodes under the message passing

LPA can be as a metric a) Label Influence (b) Predicted to Orange (c) Predicted to Blue

oy . Class Influence [ : - - <
Proposition 1: LPA can be utilized to ~ Prediction of GC{ i Prediction of GCEK l

calculate the probability of every class for a
unlabeled nodes in the GCN framework. @

i.e., The output of LPA represents the class
that provides the most label information to
a node.

GCN is considered to have effectively utilized the label information if the predicted class aligns with the class
that contributes the most label information through message passing.

VELu = {V|LPA(Q) = GCN(g)} Cora Citeseer Pubmed
VxeLu = {V|LPA(G) # GCN(G)}

NELU

NELU

ELU
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. Method
'

Label influence: Q =SY

A Wang et al min||SX—XHiﬂ X
GCN prediction: Y =SH, s.t. H= MLP(X) % S
= , : & 2 : 2 i
Objective function: min Q — Y o msln |SY — SHHF Daitch et al., msmz D, X; — Z S; X, X
i J
~ ~ \We construct a New Traditional graph learning min l S X — X.|I2
% Objective Function Zhang etal., Tl 5 ; 6| Xi = X X
Many existing works are built upon traditional graph Jiang et al., Il’iin tr (XTLX) X
learning objective functions, while our approach may
offer a new direction. Ours mgn HSY — SH H%‘ X,Y
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. Method

How to solve our objective function We cannot directly optimize this objective function, because:

.\ 2 . - .
min QY Fzmsinnsy_SHH%»m it has a trivial solution: =0,

2. LPA should reinitialize the labels to avoid modifying the ground-truth.
lteratively update solution

Step 1: Propagate labels
1. We first calculate LPA: QY =S VQU Y (5 =1,...,k),where Q¥ =Y

_ ) 5 ) 0 1. Solvable
2. Then, the objective function is changed: min QY —SH _ +5) si;s.t. Q" = Yl{ .
ij—1 2. Reinitialize the labels

Step 2: Re-computing adjacency matrix

1. Get S by calculating the closed-form solution of the objective function: st = QWH" (HH" + BIN)_1

Algorithm 2 Pseudo code of calculating S*.
1: fori< 1,2,--- ,kdo
2:  Calculate Q) by Step 1;
3:  Calculate S*) by Step 2;
4. end for

Iterate steps 1 and 2 to solve the final S
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. Method

Model Efficiency

The time complexity of calculate S = Q¥H” (HH” + [3IN)_1 is (3

Calculation Trick

We can avoid to calculation S , directly substitute S® in the second step into the first step to avoid the output

being an n*n matrix and use the Woodbury identity trick, the finally time complexity changeto ( 2 +¢3),

. . . : 1 1 1 ¥ : i
Q¥ = st-1Ql-1) = QU-NHT (EIN — EH(IC + EHTH) HT) Qi s.t. Q¥ =Y,

Solution Process Changes

Algorithm 2 Pseudo code of calculating S*. Algorithm 2 Pseudo code of calculating S*.
1: fori< 1,2,--- ,kdo I: fori« 1,2,--- ,kdo |
2:  Calculate Q' by Step 1; » 2:  Calculate Q¥ by above equation;
3:  Calculate S® by Step 2; 3: end for B
4 end for 4 Caleulate S = QW(JHT — LHTH (I + 1HTH) HT).;
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. Method

How to fully use the original graph information and the ELU-graph?

Most common used and efficient strategy:
Y = Softmax((1 — n)H

On this basis, we fist learn a projection head g, P

- SHIN el
s Pos+Neg n Yijlogyi; s-t.

> exp(d(P

The final objective function:

L=CEY,Y)+ Xcon
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. Method

Theorem 3.3. Given a graph G with its adjacency matrix A,
the label matrix in the training set Y and the label matrix of
the ground truth Y ¢,ye, for any unlabeled nodes, if a graph
structure makes the labels in training set be consistent to
the ground truth, 1.e., Y rue = AY, then the upper bound
of the generalization ability of the GCN is optimall.

W4
» o
& o)
1956

Theorem 3.4. The optimization Eq. (5) is equivalent to an
approximate optimization of minp ||AY — Y truel| %
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. Experiments

Effectiveness and Efficiency

Table 1. Performance on node classification task. The highest results are highlighted in bold. ?OOM” denotes out of memory.

Method Cora Citeseer pubmed Computers Photo Chameleon  squirrel g
GCN 81.61+042 70.35+045 79.01+t062 81.62+243  90.44+123  60.82+224  43.43+2.18
GAT 83.03+071 71.54+1.12  79.17+038  78.01+191  85.71+203 _40.72+155 30.264250 ]
APPNP 83.33+062 71.80+084+ 80.10+021  82.12+3.13  88.63+3.73  56.36+153  46.53+2.18

80
GPRGNN 80.55+1.05 68.57+122 77.02+259  81.71+284 91234259  46.85+171  31.61+1.24 N
PCNet 82.81+050 69.92+070 80.01+to8s  81.82+231  89.63+241  59.74+143  48.53x112 5

8 75
GCN-LPA 83.13+051 72.60+080 78.64+132  83.54+141  90.13+153  50.26+138  42.78+236 § + Cora-GON
N.S.-GCN 82.12+0.14 71.55+014 79.144012 81.16+153 89.86+186 55.37+164 46.86+202 <yl Cora-GAT
PTDNet-GCN  82.81+023 72.73+0.18 78.81+024 82214213  90.234+284  53.26+144  41.96+2.16 : g’t;aseoe‘:rém
CoGSL 81.76+024  72.79+0.42 OOM OOM 89.63+224  52.23+203  39.96+331 4. Citeseer-GAT
NodeFormer 80.28+082 71.31+098 78.21+143  80.35+275 89.37+203  34.71+412  38.54+151 o Citeseer-Ours
GSR 83.08+0.48 72.10+02s 78.09+t0s53  81.63+135  90.02+132  62.28+163  50.53+193 ] v Pubmed-GCN
BAGCN 83.70x021 72.96x075 78.54x072  79.63x252  91.25%tess  52.63x178 4236153 it
ELU-GCN 84.29+039 74.23+062 80.51+021 83.73+231  90.81+133  70.90+1.76  56.91+1.81 0 15 21 3 3% 3% 4 4
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. Experiments

Ablation Study and Visualization of ELU Graph

Table 2. Classification performance of each component in the proposed method on all datasets.

Method Cora Citeseer pubmed Computers Photo Chameleon squirrel

GCN 81.61+042 70.35+045 79.01+062  81.62+243  90.44+123  60.82+224  43.43+2.18
+ELU graph  83.494055 72.02+036 80.25+079  82.56+123  90.524+133  65.124+143  54.124132
+Lcon 84.29+039 74.23+062 80.51+021 83.73+231  90.81+133  70.90+176  56.91+1.81
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Figure 3. Visualization of the adjacency matrix of the ELU graph on Cora, Computers, Photo, and Chameleon datasets. The rows and
columns are nodes that are reordered based on node labels, the lighter a pixel, the larger the value of the ELU graph matrix weight.
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. Summary

Conclusion

® Ve propose a new objective function that optimizes the graph structure to ensure that
GCNs effectively utilize label information for unlabeled nodes.
® This objective function may inspire more supervised graph structure learning method.

® we design a contrastive loss to capture consistency or mutually exclusive information
between the original graph and the ELU graph.
® The proposed contrasting form of one-to-one and the traditional form of one-to-many
can be further explored and interacted.

® Theoretical contribution: Provides guidance on improving generalization ability through
graph structure learning.
® The accuracy of label propagation is an important indicator of graph structure quality.
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