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What is Dataset Distillation?

Dataset distillation compresses large datasets into compact synthetic subsets,
significantly reducing training time and computation while maintaining model performance.
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What is Dataset Distillation?

Dataset distillation compresses large datasets into compact synthetic subsets,
significantly reducing training time and computation while maintaining model performance.
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Efficiency Without Security

Most dataset distillation methods are efficient but vulnerable to adversarial attacks, limiting their
reliability in safety-critical areas like face recognition, autonomous driving, and object detection.
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Efficiency Without Security

Most dataset distillation methods are efficient but vulnerable to adversarial attacks, limiting their
reliability in safety-critical areas like face recognition, autonomous driving, and object detection.

- T Ty Ty Ty rrreee ooy

Training Stage [rrelevant Information Testing Stage Low Accuracy }

DC, DSA,
| MITLDM, E
] IDM, BACON. }

* Apple: 89%
e Bird: 8%
* Airplane: 3% i

Automobile

o

E E IIIII E:..‘:.é EE A“ ‘ ;
B Dataset [ o oy : .+ Dog: 3%
i« Ship: 2%

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------




Efficiency Without Security

Most dataset distillation methods are efficient but vulnerable to adversarial attacks, limiting their
reliability in safety-critical areas like face recognition, autonomous dri\{‘i_n_g., and object detection.
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Dataset distillation improves efficiency, but not robustness.




How to enhance the robustness of models?

Adversarial robustness is a key research focus. A common way to improve it is adversarial
training, but this method is costly and hard to apply in data-efficient settings like dataset
distillation.
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= High retraining cost, making the process
computationally expensive.
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Existing Challenges

= High retraining cost, making the process
computationally expensive.

= Robustness-accuracy trade-off, where improving
adversarial robustness often reduces clean
accuracy.

Step 2: Retrain on distilled dataset with adversarial perturbations




ROME: RObust distilled datasets via InforMation BottlenEck
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Experimental Results

The adversarial robustness of ROME and other dataset distillation methods is evaluated
under white-box attack settings.

Table 1. Comparison of model robustness when trained using various DD methods with IPC settings of {1, 10, 50}, against both white-box
targeted and untargeted attacks on the CIFAR-10 and CIFAR-100 datasets. Robustness evaluation metrics include RR and CREI, as well
as their improved versions I-RR and I-CREI. The best results between the baseline and proposed methods are highlighted in bold, while
the second-best results are underlined. Improvements in metrics compared to the second-best results are highlighted in red.

Dataset Method Targeted Attack Untargeted Attack
RR CREI I-RR [-CREI RR CREI I-RR [-CREI
Full-size 20.42% 24.98% 67.24% 48.39% 2833%  25.12%  28.82%  25.36%
DC V20 30.79% 29.35% 88.51% 58.21% 31.87%  26.710%  56.02%  38.78%
S DSA 2021 45.22% 36.43% 86.81% 57.22% 36.53%  27.75%  53.66%  36.32%
o MTT 242 36.00% 32.26% 83.95% 56.24% 33.30%  26.26%  48.34%  33.77%
g DM 2V23 46.01% 36.01% 85.76% 55.89% 3450%  28.32%  56.19%  39.16%
O IDM 2023 32.35% 27.75% 87.07% 55.11% 33.03%  28.46%  53.43%  38.66%
BACON 2"%* | 36.83% 33.05% 84.37% 56.82% 3287%  27.20%  50.49%  36.01%
ROME 81.36% 55.28% 97.44%  63.32% | 49.86% 35.05% 67 01% 43.62%
(35357) (18851 (8931 (5.I111) | (13.331) (6.5971T) ((10821) @44617)
Full-size 6.77% 18.18% 65.50% 47.55% 1991%  18.60%  20.08%  18.69%
DC #V2Y 33.11% 30.31% 77.14% 52.32% 28.74%  22.40%  32.33%  24.19%
§ DSA 221 43.97% 35.01% 72.97% 49.51% 28.53%  2040%  33.29%  22.77%
o MTT Y22 36.06% 31.16% 74.54% 50.40% 26.07%  19.65%  31.10% 22.17%
fﬁ_ DM 2V23 39.32% 31.32% 71.29% 47.30% 26.72%  19.78%  29.74%  21.28%
O IDM 2Y2¢ 34.44% 27.16% 74.57% 47.23% 26.28%  20.36%  30.83%  22.63%
BACON 2"%* | 31.81% 29.78% 69.96% 48.86% 25.26%  1930%  27.42%  20.38%
ROME 103.09% 66.18% 100.65% 64.96% | 44.10% 28.29% 46.24% 29.36%
(59.12 1) (@L.171) @3517) 12641 [ (15367T) (B5.891) (12951 (G.171)




Experimental Results

The adversarial robustness of ROME and other dataset distillation methods is evaluated
under black-box attack settings.

Tab.Ie 2. Comparlson Of. model robustn.ess measured by I-RR for Adversarial Robustness Under Black-Box Untargeted Attacks
various dataset distillation methods with IPC-50 under targeted

and untargeted transfer-based and query-based black-box attacks e

on CIFAR-10. Best results are in bold, second-best underlined, DSA- 8447 | 87.66 m 19.9
and improvements over the second-best highlighted in red.

Adversarial Robustness Under Black-Box Untargeted Attacks

DSA BRI 34 88 8GO 89 95

DC- 29.15 V243
Y0

Xd

MIT 8253 a6 m o171

Targeted Attack Untargeted Attack i 3 0
Method s & 2 DM- 3 E 35.35 _';
DC | 85.84% 88.71% | 83.97% 43.81% - - m. . &
BACON- 8391 BEENOR - SO50 87 85 . BACON \)4; 83.94 | 85.92 \l A8 EELEEE 98 6f
DSA 94.09% 94.95% | 92.31% 54.60% 850 40
MTT | 9140% 92.76% | 89.02% 48.71% - ----
DM 92.22% 93.86% | 90.36%  57.53% < & L N
IDM 92.17% 94.37% | 89.22%  63.23% Transfer Models Transfer Models <
BACON | 92.46% 94.67% | 89.25% 63.26% (a) (b)
9990% 99.799, 08.44% '78.46% Figure 3. Robustness heatmap of models trained using diverse dataset distillation methods with IPC-50 on CIFAR-10 under targeted and
ROME 581 4 84 6.13 15.2 untargeted attacks. The vertical axis represents attacked models, and the horizontal axis shows models used for transfer attacks. Heatmap
( ’ T) ( : T) ( ' T) ( ‘ T) values represent I-RR, with darker colors indicating higher I-RR and thus better robustness against adversarial attacks.




Experimental Results

The adversarial robustness and training efficiency of ROME and other dataset distillation
methods are evaluated.

Table 3. Comparison of adversarial robustness (I-CREI, %) and
training time (hours) of ROME and baseline dataset distillation
methods on CIFAR-10 (IPC-50) under targeted attacks. “Base”
indicates standard distillation training, while “+AdvTrain” refers
to the additional time required for adversarial training to improve
robustness. Best results, balancing robustness and efficiency, are
highlighted in bold, and ' denotes consistent results from “Base”
to “+AdvTrain”, indicating no need for adversarial fine-tuning.

Method [-CREI Training Time
Base +AdvTrain | Base +AdvTrain

DC 58.21% 63.43% 0.425 1.088
DSA 57.22% 63.46% 0.437 1.103
MTT 56.24% 62.44% 0.444 1.088
DM 55.89% 63.21% 0.452 1.109
IDM 55.11% 63.11% 0.414 1.055
BACON | 56.82% 62.68% 0.442 1.101
ROME | 63.32% 63.32% 1 0.418 04187




Experimental Results

Ablation studies are conducted on various configurations, with visualizations illustrating
the impact of different hyperparameters.

Impact of Hyperparameter & on Accuracy

60

551

Table 4. Ablation studies on the Robust Pretrained Model (RPM) < 301
and Adversarial Perturbation (AP) under both targeted and untar-
geted attacks, evaluated by I-RR and I-CREI on the CIFAR-10

Accuracy (%

dataset with IPC-50. Best results are highlighted in bold. ‘“"“
Configmention Targeted Attack Untargeted Attack 351
I-RR [-CREI I-RR [-CREI %0 0.2 0.4 0.6 0.8 1.0
Hyperparameter
Baseline 81.86% 55.26% | 32.45% 29.29% ’ Z) ;
+RPM 84.50%  56.53% | 34.89% 30.45% —| " .~ Ag—
+AP 94.66% 61.67% | 47.64% 36.78% 3 ' | |:§ L
+RPM&AP | 97.73% 6323% | 51.73% 38.95% 7l e ® N[

(b)

Figure 4. Ablation study of the hyperparameter a. (a) Displays the
accuracy (y-axis) as a function of « (x-axis) for different values of
«, and (b) shows the corresponding visualizations for these values.




Thank you!

If you're interested in adversarial robustness or dataset distillation, feel free to reach out.

E-mail: zhengzhou@buaa.edu.cn
Personal Website: https://zhouzhengqgd.github.io/

Scan the QR codes for more information.
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