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Efficiency Without Security
Most dataset distillation methods are efficient but vulnerable to adversarial attacks, limiting their 
reliability in safety-critical areas like face recognition, autonomous driving, and object detection.
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Dataset distillation improves efficiency, but not robustness.
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Step 2: Retrain on distilled dataset with adversarial perturbations

➡Robustness–accuracy trade-of, where improving 
adversarial robustness often reduces clean 
accuracy.
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Experimental Results
Ablation studies are conducted on various configurations, with visualizations illustrating 
the impact of different hyperparameters.
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