

On Zero-Initialized Attention: Optimal Prompt and Gating Factor Estimation

Nghiem Diep*, Huy Nguyen*, Chau Nguyen*, Minh Le, Duy M. H. Nguyen, Daniel Sonntag, Mathias Niepert, Nhat Ho

DFKI, HCMUS, UT Austin, Qualcomm AI, IMPRS-IS, Stuttgart, Oldenburg

Part 1. Introduction

☐ Motivation:

- **Challenge**: Fine-tune LLMs is expensive, make adaptation to new tasks difficult.
- **Solution**: LLaMA-Adapter [1] is proposed as a (PEFT) method for LLaMA models.
- Zero-initialized attention mitigate noise effect to the word tokens at the beginning of training
- However, theoretical foundations of zero-initialized attention remain largely unexplored.

Figure 1: Characteristics of LLaMA-Adapter. Our lightweight adaption method efficiently fine-tunes LLaMA (Touvron et al., 2023) 7B model with only 1.2M learnable parameters within one hour, which exhibits superior instruction-following and multi-modal reasoning capacity.

[1] Zhang, Renrui, et al. "Llama-adapter: Efficient fine-tuning of language models with zero-init attention." ICLR 2023

Part 1. Introduction

- **□** Motivation:
- ⇒ **Key Innovation**: Zero-Initialized Mechanism.
- Conduct theoretical and empirical investigation into zero-initialized attention.
- This method theoretically linked to Mixture-of-Experts (MoE) models.
- Non-linear prompts further enhance performance, flexibility, and adaptability.

Part 2. Background

☐ LLaMA-Adapter:

- Attention score: $S = QK^T/\sqrt{C}$, which $S = [S^K, S^{M+1}]^T$, $S^K \in R^{K \times 1}$ and $S^{M+1} \in R^{(M+1) \times 1}$.
- Use zero-initialized, softmax function σ is applied as: $S^g = [\sigma(S^K) \cdot \tanh(g); \sigma(S^{M+1})]^T$
- Finally, output of attention: $t^o = Linear_o(S^g V) \in R^{1 \times C}$

Figure 2: **Details of Zero-initialized Attention.** We insert learnable adaption prompts into the last L out of N transformer layers of LLaMA. To progressively learn the instructional knowledge, we adopt a zero gating factor within the attention for stable training in the early training stages.

Part 2. Background

- ☐ Zero-initialized Attention as MoE:
- Analyzing zero-initialized attention by viewing its components as gates and expert responses.
- Value matrix computed in attention is re-formularized as experts $f_i(.)$ and attention weights work as gating functions $G_i(.)$ over token interactions in MoE setting after rewriting softmax attention score matrix.
- Output of zero-initialized attention (having the MoE structure):

$$y = \sum_{j=1}^{M+1} G_j(X) \cdot f_j(X) + \tanh(g) \times \left(\sum_{j'=1}^K G_{M+1+j'}(X) \cdot f_{M+1+j'}(X) \right).$$

☐ Linear Prompt:

- **Problem settings:** Assume $\{(X_i, Y_i)\}_{i=1}^N$ are i.i.d samples from the following regression model:

$$Y_{i} = f_{G_{*},\alpha_{*}}(X_{i}) + \epsilon_{i}, \qquad i \in [N]$$

$$f_{G_{*},\alpha_{*}}(X) = \sum_{j=1}^{N} \frac{\exp(X^{T} \bar{A}_{j}^{0} X + \bar{a}_{j}^{0})}{\sum_{k=1}^{N} \exp(X^{T} \bar{A}_{k}^{0} X + \bar{a}_{k}^{0})} h(X, \bar{\eta}_{j}^{0}) + \tanh(\alpha_{*}) \cdot \sum_{j=1}^{L} \frac{\exp\left((\bar{B} p_{*,j})^{T} X + \bar{b}_{*,j}\right)}{\sum_{k=1}^{L} \exp\left((\bar{B} p_{*,k})^{T} X + \bar{b}_{*,k}\right)} \bar{C} p_{*,j}$$

- $G_* \coloneqq \sum_{j=1}^L \exp(\bar{b}_{*,j}) \, \delta_{p_{*,j}}$ denote true but unknown measure.
- $\{\epsilon_i\}_{i=1}^N$ are independent Gaussian noise, $E(\epsilon_i|X_i)=0$ and $Var(\epsilon_i|X_i)=\sigma^2I$.

☐ Linear Prompt:

- Convergence rates of prompt estimation in original attention are significantly slow, standing at the order of $O_P(1/\log^{\tau}(n))$ for some constant $\tau > 0$, where n is the sample size.
- Convergence rates of linear prompt estimations are of polynomial orders, ranging from $O_P([\log(n)/n]^{\frac{1}{2}})$ to $O_P([\log(n)/n]^{\frac{1}{4}})$
- Faster than those under the original attention.

Non-Linear Prompt:

$$f_{G_{*},\alpha_{*}}(X) = \sum_{j=1}^{N} \frac{\exp(X^{T} \bar{A}_{j}^{0} X + \bar{a}_{j}^{0})}{\sum_{k=1}^{N} \exp(X^{T} \bar{A}_{k}^{0} X + \bar{a}_{k}^{0})} h(X, \bar{\eta}_{j}^{0}) + \tanh(\alpha_{*}) \cdot \sum_{j=1}^{L} \frac{\exp\left(\left(\bar{B}\sigma(p_{*,j})\right)^{T} X + \bar{b}_{*,j}\right)}{\sum_{k=1}^{L} \exp\left(\left(\bar{B}\sigma(p_{*,k})\right)^{T} X + \bar{b}_{*,k}\right)} \bar{C}\sigma(p_{*,j})$$

- Apply the same theoretical framework into non-linear prompt, the convergence rate also range from $O_P([\log(n)/n]^{\frac{1}{2}})$ to $O_P([\log(n)/n]^{\frac{1}{4}})$.
- > Zero-initialized attention with non-linear prompts is also more sample-efficient than the random-initialized attention in terms of prompt convergence.
- Sharing the same sample complexity as when using linear prompts, zero-initialized attention with non-linear prompts will be shown to offer greater flexibility in practical applications.

☐ Non-Linear Prompt:

- Replace linear prompt P with non-linear prompt $\tilde{P} = \sigma(P) \in R^{K \times d}$, where:

$$\sigma(P) = f_2\left(\phi(f_1(P))\right)$$

- Where $f_1(.)$, $f_2(.)$ are separate linear layers, $\phi(.)$ is an activation (e.i. ReLU), and P is layer embedding.
- Ensure parameter efficiency and facilitate knowledge sharing across layers, this MLP is shared among the layers that utilize the prompts.

Figure 1. LLaMA-Adapter with non-linear prompt structures. Trainable prompts are integrated into the final layers of the LLaMA model, where a zero-gating mechanism modulates the added prompts. This approach enables progressive learning of instructional knowledge while keeping the remaining model parameters frozen.

Part 4. Experiments

☐ Linear Prompt vs Random-Init Prompt:

- Note that Random-Init Prompt is conventional attention combine with PEFT. Linear Prompt is zero-initialized attention combine with PEFT.

Table 1: Commparison between *Linear prompt* (zero-initialized mechanism) and *Random-Init* prompt on 4 LLM tasks using LLaMA-7B and LLaMA-13B models.

Method		ARC		MMLU Hellaswag		${\bf TruthfullQA}$	Average	
	Acc (eas)	Acc (cha)	Acc (aver)	Acc	Acc	Acc	Trorago	
$\begin{array}{c} {\rm LLaMA\text{-}7B+zero\text{-}init} \\ {\rm LLaMA\text{-}7B+rand\text{-}init} \end{array}$	$62.29 \uparrow 1.64 \\ 60.65$	$43.17 \uparrow 2.47 \\ 40.7$	$52.73 \uparrow 2.06 \\ 50.67$	$36.28 \uparrow_{1.16} \\ 35.12$	$76.79 \uparrow 4.17 \\ 72.62$	$45.53 \uparrow 7.71 \\ 37.82$	52.83 ↑ 3.77 49.06	
$\begin{array}{c} {\rm LLaMA\text{-}13B+zero\text{-}init} \\ {\rm LLaMA\text{-}13B+rand\text{-}init} \end{array}$	$\frac{81.78}{81.61} \stackrel{\uparrow}{\uparrow} 0.17$	$64.33 \uparrow 0.42 \\ 63.91$	$\frac{73.06}{72.76}$ \(\frac{1}{0.3}\)	$\frac{49.64}{48.02} \uparrow 1.62$	81.21 ↑0.05 81.16	34.88 ↑0.36 34.52	$59.70 \uparrow 0.58 \\ 59.12$	

Part 4. Experiments

☐ Linear Prompt vs Non-Linear Prompt:

- Note that Non-Linear Prompt is zero-initialized attention combine with PEFT, and prompt is applied with non-linear mlp. Linear Prompt is zero-initialized attention combine with PEFT.

Table 2: Comparison of Non-Linear prompt, Linear prompt, and various fine-tuning methods. **Params** denote the total number of parameters updated during the fine-tuning process. **Bold** values indicate better scores between linear and non-linear settings.

Method	Params	ARC			MMLU	Hellaswag	TruthfullQA	Average
		Acc (eas)	Acc (cha)	Acc (aver)	Acc	Acc	Acc	age
LLaMA-7B, Fully Fine-tuning Alpa	7B	67.47	46.25	56.86	37.25	77.09	42.35	53.39
LLaMA-7B, LoRA Alpaca	4.2M	61.91	42.15	52.03	34.87	77.53	46.14	52.64
LLaMA-7B + zero-init + linear	1.2M	62.29	43.17	52.73	36.28	76.79	45.53	52.83
LLaMA-7B + zero-init + non-linear	2.6M	63.51	45.39	54.45	36.95	76.67	45.04	53.28
LLaMA-13B + zero-init + linear	1.9M	81.78	64.33	73.06	49.64	81.21	34.88	59.70
LLaMA-13B + zero-init + non-linear	3.3M	82.87	66.55	74.71	51.32	81.72	38.92	61.67

Part 4. Experiments

☐ Sample Efficiency:

- Note that Non-Linear Prompt is zero-initialized attention combine with PEFT, and prompt is applied with non-linear mlp. Linear Prompt is zero-initialized attention combine with PEFT.

Figure 2. Sample efficiency comparison of three prompt-tuning initialization strategies on the ARC Dataset with LLaMA-7B.

Figure 3. Sample efficiency comparison of three prompt-tuning initialization strategies on the ARC Dataset with LLaMA-13B.

Thank you for listening