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Part 1. Introduction

J  Motivation:

- Challenge: Fine-tune LLMs is expensive, make adaptation to new tasks difficult.

- Solution: LLaMA-Adapter [l] is proposed as a (PEFT) method for LLaMA models.

- Zero-initialized attention mitigate noise effect to the word tokens at the beginning of training
- However, theoretical foundations of zero-initialized attention remain largely unexplored.
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Figure 1: Characteristics of LLaMA-Adapter. Our lightweight adaption method efficiently fine-
tunes LLaMA (Touvron et al., 2023) 7B model with only 1.2M learnable parameters within one hour,
which exhibits superior instruction-following and multi-modal reasoning capacity.

[1] Zhang, Renrui, et al. "Llama-adapter: Efficient fine-tuning of language models with zero-init attention." ICLR 2023



Part 1. Introduction

1 Motivation:

= Key Innovation: Zero-Initialized Mechanism.
- Conduct theoretical and empirical investigation into zero-initialized attention.
- This method theoretically linked to Mixture-of-Experts (MoE) models.

- Non-linear prompts further enhance performance, flexibility, and adaptability.



Part 2. Background
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Figure 2: Details of Zero-initialized Attention.
We insert learnable adaption prompts into the last
L out of N transformer layers of LLaMA. To pro-
gressively learn the instructional knowledge, we
adopt a zero gating factor within the attention for
stable training in the early training stages.
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Part 2. Background

d  Zero-initialized Attention as MoE:

- Analyzing zero-initialized attention by viewing its components as gates and expert responses.

- Value matrix computed in attention is re-formularized as experts f;(.) and attention weights
work as gating functions G;(.) over token interactions in MoE setting after rewriting softmax
attention score matrix.

- Output of zero-initialized attention (having the MoE structure):
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Part 3. Method

4 Linear Prompt:
Problem settings: Assume {(X;,Y;)})_, are ii.d samples from the following regression model:

Yi = feoa.(Xi) + €, P €[N]
L exp((Bp.,) X +b.y)
b.

=1 Xk=1€Xp ((Bp*k) X+

exp(XTAOX +a)
_,exp(XTAYX + a

f6,0.(X) = h(X 77) + tanh(a,) -

)Cp*]

- Z§=1 eXp(E*, j) 51,*’]. denote true but unknown measure.

{Ei}liv=1 are independent Gaussian noise, E(€;|X;) = 0 and Var(e;|X;) = a?l.



Part 3. Method

4 Linear Prompt:
- Convergence rates of prompt estimation in original attention are significantly slow, standing
at the order of Op(1/log*(n)) for some constant T > 0, where n is the sample size.

- Convergence rates of linear prompt estimations are of polynomial orders, ranging from

0p([log(n) /nl2) to Op([log(n) /n]®)

» Faster than those under the original attention.



Part 3. Method

4 Non-Linear Prompt:
_ T —
exp(XTAYX + @) o L, exp ((B o(p.;)) X+ b*J)
h(X, 7)) + tanh(a,) - - —
Xk _ exp ((Ba(p*,k)) X+ by

N
fG*,a* (X) =

_ & Co(p. ;)
jzlzf,X:l exp(XTALX + a) ) J

- Apply the same theoretical framework into non-linear prompt, the convergence rate also

range from Op([log(n) /n]%) to Op([log(n) /n]i).

» Zero-initialized attention with non-linear prompts is also more sample-efficient than the
random-initialized attention in terms of prompt convergence.

» Sharing the same sample complexity as when using linear prompts, zero-initialized attention

with non-linear prompts will be shown to offer greater flexibility in practical applications.



Part 3. Method

4 Non-Linear Prompt:

Replace linear prompt P with non-linear
prompt P = g(P) € RX*4, where:

a(P) = £, (¢(A(P)))

Where f1(.), fo(.) are separate linear layers,
¢(.) is an activation (e.i. ReLU), and P is
layer embedding.

Ensure parameter efficiency and facilitate
knowledge sharing across layers, this MLP is
shared among the layers that utilize the
prompts.
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Figure 1. LLaMA-Adapter with non-linear prompt structures.
Trainable prompts are integrated into the final layers of the LLaMA
model, where a zero-gating mechanism modulates the added
prompts. This approach enables progressive learning of instruc-
tional knowledge while keeping the remaining model parameters
frozen.



Part 4. Experiments

d Linear Prompt vs Random-Init Prompt:
- Note that Random-Init Prompt is conventional attention combine with PEFT. Linear Prompt
is zero-initialized attention combine with PEFT.

Table 1: Commparison between Linear prompt (zero-initialized mechanism) and Random-Init prompt

on 4 LLM tasks using LLaMA-7B and LLaMA-13B models.

Method ARC MMLU  Hellaswag TruthfullQA Average
Ace (eas)  Aec (cha)  Acc (aver) Aee Aee Ace

LLaMA-7TB + zero-init 62.29 T164 4317 T247 5273 T206 36.28 T116  T6.7T9 T4a7 45.53 1771 52.83 Tarr

LLaMA-7B + rand-init 60.65 40.7 50.67 35.12 72.62 37.82 49.06

LLaMA-13B + zero-init  81.78 to17  64.33 to4z  73.06 To3 49.64 T162 81.21 toos 34.88 o036 59.70 T o.58

LLaMA-13B + rand-init 81.61 63.91 T2.76 48.02 81.16 34.52 59.12




Part 4. Experiments

d  Linear Prompt vs Non-Linear Prompt:

- Note that Non-Linear Prompt is zero-initialized attention combine with PEFT, and prompt is
applied with non-linear mlp. Linear Prompt is zero-initialized attention combine with PEFT.

Table 2: Comparison of Non-Linear prompt, Linear prompt, and various fine-tuning methods.
Params denote the total number of parameters updated during the fine-tuning process. Bold values
indicate better scores between linear and non-linear settings.

Method Params ARC MMLU Hellaswag TruthfullQA Average
Aec (eas) Ace (cha) Acc (aver) Ace Ace Ace
LLaMA-7B, Fully Fine-tuning Alpaca 7B 67.47 46.25 56.86 37.25 77.09 42.35 53.39
LLaMA-TB, LoRA Alpaca 4.2M 61.91 42.15 52.03 34.87 77.53 46.14 52.64
LLaMA-7B + zero-init + linear 1.2M 62.29 43.17 52.73 36.28 76.79 45.53 52.83
LLaMA-7B + zero-init + non-linear 2.6M 63.51 45.39 54.45 36.95 76.67 45.04 53.28
LLaMA-13B + zero-init + linear 1.9M 81.78 64.33 73.06 49.64 81.21 34.88 59.70
LLaMA-13B + zero-init + non-linear 3.3M B2.87 66.55 T4.7T1 51.32 81.72 38.92 61.67
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Part 4. Experiments
Note that Non-Linear Prompt is zero-initialized attention combine with PEFT, and prompt is

1 Sample Efficiency:
applied with non-linear mlp. Linear Prompt is zero-initialized attention combine with PEFT.
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Figure 3. Sample efficiency comparison of three prompt-tuning
initialization strategies on the ARC Dataset with LLaMA-13B.

Figure 2. Sample efficiency comparison of three prompt-tuning
initialization strategies on the ARC Dataset with LLaMA-7B.
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Thank you for listening
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