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Illustrating example: Ice cream stall problem

• I want to run an ice cream stall on a beach

Ice cream stall composition

• large bucket for the main flavor of ice cream

• small containers for the other flavors

Which main flavor to choose?

• main flavor is cheap;

• small container gets empty → request a refill → surcharge

I have no previous experience
• I can observe local experts on other beaches

• I don’t know which expert is going to do better
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Expert 1

Strawberry ice cream
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Expert 2

Inkfish ice cream – Flavor of the summer 2025!

3/10



Illustrating example: Ice cream stall problem

• main flavor cheap; other flavors provided with surcharge

• Let’s imitate Expert 2

Time slot Expert 1

Surcharge:

Expert 2

Surcharge:

ME

Surcharge:
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Metrical Task Systems (MTS) [Borodin, Linial, Saks ’92]

xt? d(xt−1, xt)

M

ct

x0

ct(xt−1)

• metric space of states (M,d), initial state x0 ∈ M

• Sequence of costs received online:
• at time t, we receive ct : M → R+ ∪ {+∞}
• we choose xt ∈ M and pay ct(xt) + d(xt, xt−1)

• Target: minimize
∑T

t=1 ct(xt) + d(xt, xt−1)

Benchmark

• Offline optimum: the best trajectory x1, . . . , xT ∈ M

OFF = min
x1,...,xT

T∑
t=1

ct(xt) + d(xt, xt−1)
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Combining heuristics

What are our experts?

• heuristics H1, . . . ,Hℓ simulated on the same MTS instance

• our decisions: based on their states s1t , . . . , s
ℓ
t

• we want: cost ≤ (1 + ϵ)min{H1, . . . ,Hℓ} on every input

Challenge

• online setting: which Hi will be the best?

Full information

At each time t, observe the state sit of Hi for each i = 1, . . . , ℓ

Bandit-style access

At each time t, choose single it ∈ {1, . . . , ℓ} and observe sitt
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Related works

Full information setting

• [Blum, Burch 2000]

• [Antoniadis et al. 2023]

Bandits with memory-bounded adversaries

• [Arora et al. 2012]

Bandits with switching costs

• [Dekel et al. 2013]
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Our results

Setting and parameters

• MTS on a metric space with diameter D

• bandit access to heuristics H1, . . . ,Hℓ

• benchmark OPT := min{H1, . . . ,Hℓ}

Theorem

There is an algorithm ALG with cost

E[ALG] ≤ OPT+O
(
(Dℓ log ℓ)1/3OPT2/3

)
= (1 + o(1))OPT

on any input instance.

Theorem

For any algorithm ALG there is an input instance such that

E[ALG] ≥ OPT+Ω̃
(
(Dℓ)1/3OPT2/3

)
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Implications for learning-augmented algorithms

Algorithms with predictions

• Algorithm receives predictions from ML models

• predictions are untrusted: arbitrarily good/bad

• consistency: great performance with good predictions

• robustness: never (much) worse than without predictions

Achieving robustness

H1 uses some prediction model, H2 is a classical R-competitive

algorithm. We pay at most (1 + ϵ)min{H1, R ·OFF}.

Choosing prediction model online

Each H1, . . . ,Hℓ uses a different prediction model. We pay at

most (1 + ϵ)min{H1, . . . ,Hℓ}.

9/10



Implications for learning-augmented algorithms

Algorithms with predictions

• Algorithm receives predictions from ML models

• predictions are untrusted: arbitrarily good/bad

• consistency: great performance with good predictions

• robustness: never (much) worse than without predictions

Achieving robustness

H1 uses some prediction model, H2 is a classical R-competitive

algorithm. We pay at most (1 + ϵ)min{H1, R ·OFF}.

Choosing prediction model online

Each H1, . . . ,Hℓ uses a different prediction model. We pay at

most (1 + ϵ)min{H1, . . . ,Hℓ}.

9/10



Implications for learning-augmented algorithms

Algorithms with predictions

• Algorithm receives predictions from ML models

• predictions are untrusted: arbitrarily good/bad

• consistency: great performance with good predictions

• robustness: never (much) worse than without predictions

Achieving robustness

H1 uses some prediction model, H2 is a classical R-competitive

algorithm. We pay at most (1 + ϵ)min{H1, R ·OFF}.

Choosing prediction model online

Each H1, . . . ,Hℓ uses a different prediction model. We pay at

most (1 + ϵ)min{H1, . . . ,Hℓ}.

9/10



Thank You

Thank you for your attention!

mateigabriel.cosa@studbocconi.it

marek.elias@unibocconi.it
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