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lllustrating example: Ice cream stall problem

e | want to run an ice cream stall on a beach

Ice cream stall composition
e large bucket for the of ice cream
e small containers for the other flavors

Which main flavor to choose?

° is cheap;

e small container gets empty — request a refill —
| have no previous experience

e | can observe local experts on other beaches

e | don’t know which expert is going to do better )
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Strawberry ice cream
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Inkfish ice cream — Flavor of the summer 2025!
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lllustrating example: Ice cream stall problem
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Metrical Task Systems (MTS) [Borodin, Linial, Saks '92]
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Metrical Task Systems (MTS) [Borodin, Linial, Saks '92]

M = 5
©? T d@wonw)  we
e metric space of states (M, ), initial state zp € M
e Sequence of costs received online:
e at time t, we receive ¢;: M — R, U {+o0}
e we choose x; € M and pay ¢;(x¢) +
o Target: minimize Y7 ¢;(z) +

Benchmark

e Offline optimum: the best trajectory z1,...,27 € M

T
OFF = min Y e (r)+
L1y XT —1 5/10



Combining heuristics

What are our experts?

e heuristics Hy, ..., Hy simulated on the same MTS instance
e our decisions: based on their states s},..., st
e we want: cost < (14 ¢)min{Hy,...,H,} on every input
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e our decisions: based on their states s},..., st

e we want: cost < (14 ¢)min{Hy,...,H,} on every input
Challenge

e online setting: which H; will be the best?

Full information

At each time t, observe the state s¢ of H; for each i =1,...,/

At each time ¢, choose single i; € {1,...,¢} and observe s
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Related works

Full information setting
e [Blum, Burch 2000]
e [Antoniadis et al. 2023]
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Related works

Full information setting
e [Blum, Burch 2000]
e [Antoniadis et al. 2023]

Bandits with memory-bounded adversaries
e [Arora et al. 2012]

Bandits with switching costs

o [Dekel et al. 2013]
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Our results

Setting and parameters

e MTS on a metric space with diameter D
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e benchmark OPT := min{H;,..., Hy}
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Our results

Setting and parameters

e MTS on a metric space with diameter D
° to heuristics Hy, ..., Hy
e benchmark OPT := min{H;,..., Hy}

There is an algorithm ALG with cost
E[ALG] < OPT +O((D¢log £)*/3 i = OPT

on any input instance.

For any algorithm ALG there is an input instance such that
E[ALG] > OPT +Q((D¢)*/3 )
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Implications for learning-augmented algorithms

Algorithms with predictions

e Algorithm receives predictions from ML models

e predictions are . arbitrarily good/bad
° . great performance with good predictions
. : never (much) worse than without predictions
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Implications for learning-augmented algorithms

Algorithms with predictions

e Algorithm receives predictions from ML models

e predictions are . arbitrarily good/bad
° . great performance with good predictions
. : never (much) worse than without predictions

Achieving robustness
H; uses some prediction model, Hs is a classical R-competitive
algorithm. We pay at most (1 + €) min{H;, R - OFF}.

Choosing prediction model online
Each Hi,..., Hy uses a different prediction model. We pay at
most (1 + ¢) min{Hy, ..., Hp}.
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Thank You

Thank you for your attention!

mateigabriel.cosa@studbocconi.it

marek.elias@unibocconi.it
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