Learning-Augmented Algorithms for MTS with Bandit Access to Multiple Predictors

Matei Gabriel Coșa Marek Eliáš

ICML 2025

Bocconi University

• I want to run an ice cream stall on a beach

• I want to run an ice cream stall on a beach

Ice cream stall composition

- large bucket for the main flavor of ice cream
- small containers for the other flavors

• I want to run an ice cream stall on a beach

Ice cream stall composition

- large bucket for the main flavor of ice cream
- small containers for the other flavors

Which main flavor to choose?

- main flavor is cheap;
- ullet small container gets empty o request a refill o surcharge

I want to run an ice cream stall on a beach

Ice cream stall composition

- large bucket for the main flavor of ice cream
- small containers for the other flavors

Which main flavor to choose?

- main flavor is cheap;
- ullet small container gets empty o request a refill o surcharge

I have no previous experience

- I can observe local experts on other beaches
- I don't know which expert is going to do better

Expert 1

Strawberry ice cream

2/10

Expert 2

Inkfish ice cream - Flavor of the summer 2025!

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot

Expert 1

Surcharge:

Expert 2

Surcharge:

ME

Surcharge:

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot

08:00-08:30

Expert 1

Surcharge:

Expert 2

Surcharge:

ME

Surcharge:

D

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot

08:00-08:30 08:30-09:00

Expert 1

Surcharge:

0

0

Expert 2

Surcharge:

\$

\$

ME

Surcharge:

\$

\$

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot

08:00-08:30 08:30-09:00 09:00-09:30

Expert 1

Surcharge:

0

0

\$

Expert 2

Surcharge:

\$

\$

0

ME

Surcharge:

\$

\$

0

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

_					
	im	e	S	ot	
		_	•	_	

08:00-08:30 08:30-09:00 09:00-09:30 09:30-10:00

Expert 1

U
0
Œ

Surcharge:

Expert 2

Surcharge:

ME

Surcharge:

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Tin	1e	sl	ot

Expert 1

Surcharge:

U
0
C

09:00-09:30 09:30-10:00

10:00-10:30

08:00-08:30

08:30-09:00

Λ

Expert 2

Surcharge:

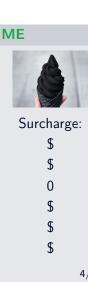
\$	

ME

Surcharge:

- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot	Expert 1	
	Surcha	rge:
08:00-08:30	0	
08:30-09:00	0	
09:00-09:30	\$	
09:30-10:00	0	
10:00-10:30	0	
10:30-11:00	0	



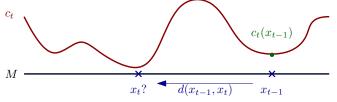
- main flavor cheap; other flavors provided with surcharge
- Let's imitate Expert 2

Time slot	Expert 1	Expert 2	ME	
	Surcharge:	Surcharge:	Surcharge:	
08:00-08:30	0	\$	\$	
08:30-09:00	0	\$	\$	
09:00-09:30	\$	0	0	
09:30-10:00	0	\$	\$	
10:00-10:30	0	\$	\$	
10:30-11:00	0	\$	\$	
11:00-11:30	0	\$	\$ 4/10	

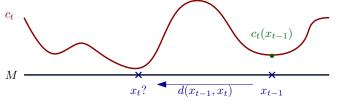
• metric space of states (M, \mathbf{d}) , initial state $x_0 \in M$

- metric space of states (M, \mathbf{d}) , initial state $x_0 \in M$
- Sequence of costs received online:
 - at time t, we receive $c_t \colon M \to \mathbb{R}_+ \cup \{+\infty\}$

- metric space of states (M, \mathbf{d}) , initial state $x_0 \in M$
- Sequence of costs received online:
 - at time t, we receive $c_t \colon M \to \mathbb{R}_+ \cup \{+\infty\}$
 - we choose $x_t \in M$ and pay $c_t(x_t) + d(x_t, x_{t-1})$



- metric space of states (M, \mathbf{d}) , initial state $x_0 \in M$
- Sequence of costs received online:
 - at time t, we receive $c_t \colon M \to \mathbb{R}_+ \cup \{+\infty\}$
 - we choose $x_t \in M$ and pay $c_t(x_t) + d(x_t, x_{t-1})$
- Target: minimize $\sum_{t=1}^{T} c_t(x_t) + d(x_t, x_{t-1})$



- metric space of states (M, d), initial state $x_0 \in M$
- Sequence of costs received online:
 - at time t, we receive $c_t \colon M \to \mathbb{R}_+ \cup \{+\infty\}$
 - we choose $x_t \in M$ and pay $c_t(x_t) + d(x_t, x_{t-1})$
- Target: minimize $\sum_{t=1}^{T} c_t(x_t) + d(x_t, x_{t-1})$

Benchmark

• Offline optimum: the best trajectory $x_1, \ldots, x_T \in M$

OFF =
$$\min_{x_1,...,x_T} \sum_{t=1}^{T} c_t(x_t) + d(x_t, x_{t-1})$$

What are our experts?

- ullet heuristics H_1,\ldots,H_ℓ simulated on the same MTS instance
- ullet our decisions: based on their states s_t^1,\dots,s_t^ℓ
- we want: $cost \leq (1+\epsilon) \min\{H_1, \dots, H_\ell\}$ on every input

What are our experts?

- ullet heuristics H_1,\ldots,H_ℓ simulated on the same MTS instance
- ullet our decisions: based on their states s_t^1,\dots,s_t^ℓ
- we want: $cost \leq (1 + \epsilon) min\{H_1, \dots, H_\ell\}$ on every input

Challenge

• online setting: which H_i will be the best?

What are our experts?

- ullet heuristics H_1,\ldots,H_ℓ simulated on the same MTS instance
- ullet our decisions: based on their states s_t^1,\dots,s_t^ℓ
- we want: $cost \leq (1+\epsilon) \min\{H_1, \dots, H_\ell\}$ on every input

Challenge

• online setting: which H_i will be the best?

Full information

At each time t, observe the state s_t^i of H_i for each $i=1,\ldots,\ell$

What are our experts?

- ullet heuristics H_1,\ldots,H_ℓ simulated on the same MTS instance
- ullet our decisions: based on their states s_t^1,\dots,s_t^ℓ
- we want: $cost \leq (1 + \epsilon) min\{H_1, \dots, H_\ell\}$ on every input

Challenge

• online setting: which H_i will be the best?

Full information

At each time t, observe the state s_t^i of H_i for each $i=1,\ldots,\ell$

Bandit-style access

At each time t, choose single $i_t \in \{1, \dots, \ell\}$ and observe $s_t^{i_t}$

Related works

Full information setting

- [Blum, Burch 2000]
- [Antoniadis et al. 2023]

Related works

Full information setting

- [Blum, Burch 2000]
- [Antoniadis et al. 2023]

Bandits with memory-bounded adversaries

• [Arora et al. 2012]

Related works

Full information setting

- [Blum, Burch 2000]
- [Antoniadis et al. 2023]

Bandits with memory-bounded adversaries

• [Arora et al. 2012]

Bandits with switching costs

• [Dekel et al. 2013]

Our results

Setting and parameters

- ullet MTS on a metric space with diameter D
- bandit access to heuristics H_1, \ldots, H_ℓ
- benchmark $OPT := \min\{H_1, \dots, H_\ell\}$

Our results

Setting and parameters

- MTS on a metric space with diameter D
- bandit access to heuristics H_1, \ldots, H_ℓ
- benchmark $OPT := min\{H_1, \ldots, H_\ell\}$

Theorem

There is an algorithm ALG with cost

 $\mathbb{E}[ALG] \le OPT + O((D\ell \log \ell)^{1/3} OPT^{2/3}) = (1 + o(1)) OPT$ on any input instance.

Our results

Setting and parameters

- ullet MTS on a metric space with diameter D
- bandit access to heuristics H_1, \ldots, H_ℓ
- benchmark $OPT := min\{H_1, \ldots, H_\ell\}$

Theorem

There is an algorithm ALG with cost

$$\mathbb{E}[ALG] \le OPT + O((D\ell \log \ell)^{1/3} OPT^{2/3}) = (1 + o(1)) OPT$$
 on any input instance.

Theorem

For any algorithm ALG there is an input instance such that

$$\mathbb{E}[ALG] \ge OPT + \tilde{\Omega}((D\ell)^{1/3} \frac{OPT^{2/3}}{OPT^{2/3}})$$

Implications for learning-augmented algorithms

Algorithms with predictions

- Algorithm receives predictions from ML models
- predictions are untrusted: arbitrarily good/bad
- consistency: great performance with good predictions
- robustness: never (much) worse than without predictions

Implications for learning-augmented algorithms

Algorithms with predictions

- Algorithm receives predictions from ML models
- predictions are untrusted: arbitrarily good/bad
- consistency: great performance with good predictions
- robustness: never (much) worse than without predictions

Achieving robustness

 H_1 uses some prediction model, H_2 is a classical R-competitive algorithm. We pay at most $(1 + \epsilon) \min\{H_1, R \cdot \text{OFF}\}.$

Implications for learning-augmented algorithms

Algorithms with predictions

- Algorithm receives predictions from ML models
- predictions are untrusted: arbitrarily good/bad
- consistency: great performance with good predictions
- robustness: never (much) worse than without predictions

Achieving robustness

 H_1 uses some prediction model, H_2 is a classical R-competitive algorithm. We pay at most $(1 + \epsilon) \min\{H_1, R \cdot \text{OFF}\}.$

Choosing prediction model online

Each H_1, \ldots, H_ℓ uses a different prediction model. We pay at most $(1+\epsilon)\min\{H_1, \ldots, H_\ell\}$.

Thank You

Thank you for your attention!

mateigabriel.cosa@studbocconi.it
marek.elias@unibocconi.it