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Compositional Shifts
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* Some combinations of attributes are totally absent from the training distribution
but present in the test distribution



Compositional Shifts a
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Compositional Distribution Shifts y ™
. Assumption 1: p(x|z) = g(x|z) Vz € £~ ol k .
® Assump’[iOn 2: zteSt _¢_ :thram bUt zteSt Q zx . 1n train set : only 1n test

» Attribute Vector: z = (g, ...,2,) that characterizes the group for the input x
. Each attribute z; is categorical and can take d possible values.

. Train Distribution: p(x, z) = p(2)p(x|z) with support of z as Z 2"
. Test Distribution: g(x, z) = g(z)g(x | z) with support of z as Z e
. Cartesian Product: Z> = Z'n x Zan x ... Ztran



Contributions

Build classifiers that are robust to compositional distributions shifts!

Theory of Compositional Shifts. For the family of additive energy
distributions, we prove that additive energy classifiers generalize compositionally
to novel combinations of attributes represented by a special mathematical
object, which we call discrete affine hull.

A Practical Method. We propose simple algorithm Compositional Risk
Minimization (CRM), which first trains an additive energy classifier and then
adjusts the trained classifier for tackling compositional shifts.



Cartesian Product Extrapolation (CPE)

P, a | x) = ﬁ()’z, iy | x) q(yy, ay | x) = @(Yza 2 | x)

" Train Groups

p()’p 22 | x) = ]3()71, ayq | x) POy, ar | x) = p(yy, a, | x)

Question: What assumptions should be place on p(x | z) for CPE?



Additive Energy Distribution (AED)

p(x|2) = exp( _1TE, z)> where 17E(x,2) = Y Ey(x,2)
=1

Conditional distribution bartition Eunction Enerav Eunction Energy Function
of data given factors . 9y for each component

* Assumption: The energy function can be decomposed as addition of energies with different
components of 7

* Natural choice to model inputs that satisfy a conjunction of characteristics
e Partition function can model interaction between components of 7

Z(7) = [exp( — 11 E(x, Z))dx



Additive Energy Distribution (AED)

p(x|2) = exp( _1TE, z)) where 17E(x,2) = Y Ey(x,2)
=1

Conditional distribution bartition Eunction Enerav Eunction Energy Function
of data given factors gy U for each component

* AED expressed with inner product:

where o(z) = [onehot(z,), ..., ()neh()t(zm)]T ,
Ex) =[E|(x,1),....E/(x,d),....E _(x,1),....E (x,d)]"



Provable Extrapolation with CRM: Step 1

True Model:
p(z|x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = exp( - 0(z)TE(x))

Learned Model (Train):

p(z|x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = E: i exp( — a(z)TE(x))
Z

Free parameter

. CRM First Step: E B e argming zgR(p) where R(p) = ST log p(z| x)




Provable Extrapolation with CRM: Step 2

True Model:

p(z| x) = Softmax(log p(x|z) + log p(z)) where p(x|z) =

Learned Model (Train):

p(z]|x) = Softmax(log p(x|z) +|{log p(z)) where p(x|z) = ZA; j exp( — a(z)TE(x))
é

Learned Model (Eval): s ‘ |
q(z|x) = Softmax(log g(x| z) +|log g(z)) where g(x|z) =

B*(z)

 CRM Second Step: Under AED assumption and test group as affine combination of train groups,

B*(7) = log(

= x~p(x)

exp< - a(z)TE(x)>

)

e exp( — 0@TEW) +log p(2) - BD))
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Provable Extrapolation with CRM

True Model:
p(z| x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = exp( — a(z)TE(x))

Learned Model (Train):

p(z]|x) = Softmax(log p(x|z) +|{log p(z)) where p(x|z) = E: j exp( — a(z)TE(x))
é

Learned Model (Eval): s ‘ )

g(z|x) = Softmax(log g(x|z) +|log g(z)) where g(x|z) = B exp( — a(z)TE(x))

Theorem: If p(z|x) = p(z|x), Vz € Z"", and §(z) = q(z)
then §(z | x) = q(z|x), Yz € DAf(Z™")
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Discrete Affine Hull Extension

Train Groups

/. Test Groups

* Test group can be expressed as affine combination of train groups
0(y29 612) — G(y29 al) T G(yla al) + G(yla 612)
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CPE is not always same as Discrete Affine Hull

Note that extrapolation to novel groups depends on the support of train groups!

/ / Train
/ / Eval




Experiments: Setup

vvater Yvater Uniform Unif
Background Background AHOHE

Land Land | |
Background Background Uniform Uniform

Land Bird Water Bird Land Bird Water Bird

Train Distribution Test Distribution

e Factors z = (y, a) where y denotes the class label and a denotes the spurious attribute
. Compositional Shift: ZFain £ Ztestpyyt Ztest = DAFA(Ftrainy
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Experiments: Results

Dataset Method Average Acc WGA WeA

(No Groups Dropped)

ERM 77.9 (0.1) 43.0 (0.1) | 62.3 (1.2)
G-DRO  77.9 (0.6) 42.3 (2.5) | 87.3 (0.3
Waterbirds LC 88.3 (0.7) 75.5 (0.8) | 88.7 (0.3) o
TA soan maoe|serios We report test Average Accuracy and Worst
CRM 87.1 (0.7) 78.7 (1.6) | 86.0 (0.6) GI’Oup ACCUI’acy (WGA), averaged as 3
ERM 85.8 (0.3) 39.0 (0.6) | 52.0 (1.0)
G-DRO  89.2 (0.5) 67.7 (1.3) | 91.0 (0.6) i Tal i i
CelebA LC 9011 (02) 574 (0.6) | 90.0 (0.6) group is dropped from training and validation
sLA 90.9 (0.1) 57.4 (0.3) | 86.7 (1.9)
CRM 91.1 (0.2) 81.8 (1.2) | 89.0 (0.6) sets
ERM 85.7 (0.4) 60.5 (0.6) | 63.0 (0.0)
G-DRO  86.0 (0.4) 63.8 (0.6) | 80.7 (1.3)
MetaShift LC 88.5 (0.0) 68.2 (0.5) | 80.0 (1.2) . - ;
DA ssdon 63009 | 50000 Last column is WGA under the dataset’s
= L ) standard subpopulation shift benchmark, i.e.
ERM 69.1 (0.7) 7.2 (0.6) | 68.0 (1.7)
G-DRO  70.4 (0.1) 34.3 (0.5) | 57.0 (2.3) :
MultiNLI LC 75.9 (0.1) 54.3 (0.5) | 74.3 (1.2) with no group dropped
sLA 76.4 (0.5) 55.0 (1.8) | 71.7 (0.3)
CRM 74.6 (0.5) 57.7 (3.0) | 74.7 (1.3)
ERM 80.4 (0.1) 55.8 (0.4) | 61.0 (2.5) o - '
GDRO 80.1(0.2)  61.6 (0.4) | 647 (1.5) All methods have a harder time to generalize
e o6 (on 65600 | 66300 when groups are absent from training, but
CRM  83.7 (0.1) 68.1 (0.5) | 70.0 (0.6) :
RN 550 00, 353 23) | 553 29 CRM appears consistently more robust
G-DRO  84.0 (0.0) 36.7 (0.7) | 33.7 (1.2)
NICO++ LC 85.0 (0.0) 35.3 (2.3) | 35.3 (2.3)
sLA 85.0 (0.0) 33.0 (0.0) | 35.3 (2.3)
CRM  84.7 (0.3) 40.3 (4.3) | 39.0 (3.2)
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Chat with us during the poster session!



