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Compositional Shifts
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• Some combinations of attributes are totally absent from the training distribution 
but present in the test distribution

: in train set   : only in test

a

y



Compositional Shifts
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: in train set   : only in test

a

y

• Attribute Vector:    that characterizes  the group for the input 
• Each attribute   is categorical and can take  possible values. 

• Train Distribution:   with support of  as 
• Test Distribution:   with support of  as 

• Cartesian Product:   

z = (z1, …, zm) x
zi d

p(x, z) = p(z)p(x |z) z 𝒵𝗍𝗋𝖺𝗂𝗇

q(x, z) = q(z)q(x |z) z 𝒵𝗍𝖾𝗌𝗍

𝒵× = 𝒵𝗍𝗋𝖺𝗂𝗇
1 × 𝒵𝗍𝗋𝖺𝗂𝗇

2 × ⋯𝒵𝗍𝗋𝖺𝗂𝗇
m

Compositional Distribution Shifts
• Assumption 1:   
• Assumption 2:    but   

p(x |z) = q(x |z) ∀z ∈ 𝒵×

𝒵𝗍𝖾𝗌𝗍 ⊈ 𝒵𝗍𝗋𝖺𝗂𝗇 𝒵𝗍𝖾𝗌𝗍 ⊆ 𝒵×



Contributions

Theory of Compositional Shifts.  For the family of additive energy 
distributions, we prove that additive energy classifiers generalize compositionally 
to novel combinations of attributes represented by a special mathematical 
object, which we call discrete affine hull.

A Practical Method.  We propose simple algorithm Compositional Risk 
Minimization (CRM), which first trains an additive energy classifier and then 
adjusts the trained classifier for tackling compositional shifts.

Build classifiers that are robust to compositional distributions shifts!



Cartesian Product Extrapolation (CPE)
 
 
 

 

a1 a2

y1

y2      Train Groups 

     Test Groups 

q(y2, a2 |x) = ̂q(y2, a2 |x)

p(y1, a1 |x) = ̂p(y1, a1 |x)p(y1, a1 |x) = ̂p(y1, a1 |x) p(y1, a2 |x) = ̂p(y1, a2 |x)

p(y2, a1 |x) = ̂p(y2, a1 |x)

Question: What assumptions should be place on  for CPE?p(x |z)



Additive Energy Distribution (AED)

      where    p(x |z) = 1
ℤ(z) exp( − 1TE(x, z)) 1TE(x, z) =

m

∑
i=1

Ei(x, zi)
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Conditional distribution 
of data given factors Partition Function Energy Function Energy Function 

 for each component 

• Assumption: The energy function can be decomposed as addition of energies with different 
components of  

• Natural choice to model inputs that satisfy a conjunction of characteristics
• Partition function can model interaction between components of 

z

z
ℤ(z) = ∫ exp( − 1T E(x, z))dx



Additive Energy Distribution (AED)
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• AED expressed with inner product:  

              

             where      , 
                            

p(x |z) = 1
ℤ(z) exp( − σ(z)TE(x))

σ(z) = [onehot(z1), …, onehot(zm)]⊤

E(x) = [E1(x,1), …, E1(x, d), …, Em(x,1), …, Em(x, d)]⊤

      where    p(x |z) = 1
ℤ(z) exp( − 1TE(x, z)) 1TE(x, z) =

m

∑
i=1

Ei(x, zi)

Conditional distribution 
of data given factors Partition Function Energy Function Energy Function 

 for each component 



True Model:        

   where  

      
Learned Model (Train):  

   where  

 

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) = 1
ℤ(z) exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) = 1
B̂(z)

exp( − σ(z)T ̂E(x))

Provable Extrapolation with CRM: Step 1
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Free parameter

• CRM First Step:    where  ̂E, B̂ ∈ argminẼ,B̃R(p̃) R(p̃) = 𝔼(x,z)∼p[ − log p̃(z |x)]



True Model:        

   where  

      
Learned Model (Train):  

   where  

Learned Model (Eval):  

   where  

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) = 1
ℤ(z) exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) = 1
B̂(z)

exp( − σ(z)T ̂E(x))

̂q(z |x) = Softmax(log ̂q(x |z) + log ̂q(z)) ̂q(x |z) = 1
B⋆(z) exp( − σ(z)T ̂E(x))

Provable Extrapolation with CRM: Step 2
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• CRM Second Step:  Under AED assumption and test group as affine combination of train groups, 
 

B⋆(z) = log(𝔼x∼p(x)[
exp( − σ(z)T ̂E(x))

∑z̃∈𝒵𝗍𝗋𝖺𝗂𝗇 exp( − σ(z̃)T ̂E(x) + log p(z̃) − B̂(z̃)) ])



True Model:        

   where  

      
Learned Model (Train):  

   where  

Learned Model (Eval):  

   where  

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) = 1
ℤ(z) exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) = 1
B̂(z)

exp( − σ(z)T ̂E(x))

̂q(z |x) = Softmax(log ̂q(x |z) + log ̂q(z)) ̂q(x |z) = 1
B⋆(z) exp( − σ(z)T ̂E(x))

Provable Extrapolation with CRM

10

Theorem:    If , and  
then 

̂p(z |x) = p(z |x), ∀z ∈ 𝒵𝗍𝗋𝖺𝗂𝗇 ̂q(z) = q(z)
̂q(z |x) = q(z |x), ∀z ∈ DAff(𝒵𝗍𝗋𝖺𝗂𝗇)



Discrete Affine Hull Extension
 
 
 

 

a1 a2

y1

y2      Train Groups 

     Test Groups 

σ(y2, a2) = σ(y2, a1) − σ(y1, a1) + σ(y1, a2)
0
1
0
1

= (+1) ⋅
0
1
1
0

+ (−1) ⋅
1
0
1
0

+ (+1) ⋅
1
0
0
1

• Test group can be expressed as affine combination of train groups  
                    



CPE is not always same as Discrete Affine Hull

Note that extrapolation to novel groups depends on the support of train groups!
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Experiments: Setup
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Land Bird Water Bird

Land 
Background

Water 
Background

Train Distribution
Land Bird Water Bird

Land 
Background

Water 
Background

Test Distribution

Majority

Minority

Uniform

UniformMajority

UniformMinority

Uniform

•Factors  where  denotes the class label and  denotes the spurious attribute
•Compositional Shift:    but  

z = (y, a) y a
𝒵𝗍𝗋𝖺𝗂𝗇 ≠ 𝒵𝗍𝖾𝗌𝗍 𝒵𝗍𝖾𝗌𝗍 = DAff(𝒵𝗍𝗋𝖺𝗂𝗇)



Experiments: Results
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• We report test Average Accuracy and Worst 
Group Accuracy (WGA), averaged as a 
group is dropped from training and validation 
sets

• Last column is WGA under the dataset’s 
standard subpopulation shift benchmark, i.e. 
with no group dropped

• All methods have a harder time to generalize 
when groups are absent from training, but 
CRM appears consistently more robust

Dataset Method Average Acc WGA WGA
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 43.0 (0.1) 62.3 (1.2)

G-DRO 77.9 (0.6) 42.3 (2.5) 87.3 (0.3

LC 88.3 (0.7) 75.5 (0.8) 88.7 (0.3)

sLA 89.3 (0.4) 77.3 (0.5) 89.7 (0.3)

CRM 87.1 (0.7) 78.7 (1.6) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 39.0 (0.6) 52.0 (1.0)

G-DRO 89.2 (0.5) 67.7 (1.3) 91.0 (0.6)

LC 91.1 (0.2) 57.4 (0.6) 90.0 (0.6)

sLA 90.9 (0.1) 57.4 (0.3) 86.7 (1.9)

CRM 91.1 (0.2) 81.8 (1.2) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 60.5 (0.6) 63.0 (0.0)

G-DRO 86.0 (0.4) 63.8 (0.6) 80.7 (1.3)

LC 88.5 (0.0) 68.2 (0.5) 80.0 (1.2)

sLA 88.4 (0.1) 63.0 (0.5) 80.0 (1.2)

CRM 87.6 (0.2) 73.4 (0.7) 74.7 (1.5)

MultiNLI

ERM 69.1 (0.7) 7.2 (0.6) 68.0 (1.7)

G-DRO 70.4 (0.1) 34.3 (0.5) 57.0 (2.3)

LC 75.9 (0.1) 54.3 (0.5) 74.3 (1.2)

sLA 76.4 (0.5) 55.0 (1.8) 71.7 (0.3)

CRM 74.6 (0.5) 57.7 (3.0) 74.7 (1.3)

CivilComments

ERM 80.4 (0.1) 55.8 (0.4) 61.0 (2.5)

G-DRO 80.1 (0.2) 61.6 (0.4) 64.7 (1.5)

LC 80.7 (0.1) 65.7 (0.5) 67.3 (0.3)

sLA 80.6 (0.1) 65.6 (0.1) 66.3 (0.9)

CRM 83.7 (0.1) 68.1 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

G-DRO 84.0 (0.0) 36.7 (0.7) 33.7 (1.2)

LC 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

sLA 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)

CRM 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Table 1 Robustness under compositional shift. We compare the proposed Compositional Risk Minimization
(CRM) method to baseline Expected Risk Minimization (ERM) classifier training with no group information, and to
robust methods that leverage group labels: Group-DRO (G-DRO) (Sagawa et al., 2019), Logit Correction (LC) (Liu
et al., 2022b) and Supervised Logit Adjustment (sLA) (Tsirigotis et al., 2024). We report test Average Accuracy and
Worst Group Accuracy (WGA), averaged as a group is dropped from training and validation sets. Last column is
WGA under the dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All methods have a
harder time to generalize when groups are absent from training, but CRM appears consistently more robust (standard
error based on 3 random seeds).

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO++

CRM (B̂) 55.7 (1.0) 58.9 (0.4) 58.7 (0.6) 29.2 (2.1) 51.9 (1.0) 31.0 (1.0)

CRM 78.7 (1.6) 81.8 (1.2) 73.4 0.7) 57.7 (3.0) 68.1 (0.5) 40.3 (4.3)

Table 2 Importance of bias extrapolation. We report Worst Group Accuracy, averaged as a group is dropped from
training and validation (standard error based on 3 random seeds). CRM (B̂) is an ablated version of CRM where we
use the trained bias B̂ instead of the extrapolated bias B? mandated by our theory. The extrapolation step appears
crucial for robust compositional generalization. Merely adjusting logits based on shifting group prior probabilities does
not suffice.
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Chat with us during the poster session!


