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PART ONE

Background



| Background: Fisher Information in Diffusion Models

The diffusion Fisher (DF) in DMs, defined as the negative
Hessian of the diffused distributions’ log density:

82
Ft(mtat) = _W logqt (mtat)
t

Current practices typically approximate the diffusion Fisher by
applying auto-differentiation to the learned score network:

0 0
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Straightforward, but lacks accuracy guarantee, and is time-consuming



PART TWO

Diffusion Fisher



DF resides within a space spanned by the
outer products of score and initial data.

| >

| DF: Within the Outer Product Span Space

Proposition 1.  Defines vi (¢, 1) as
2
exp(—Jﬁc—%g%!"—I—) € R and w;(x,t) as
t

% € R. If gy takes the form as in
j ts

equation equation 10, the diffusion Fisher matrix
of the diffused distribution ¢; for ¢ € (0, 1] can be
analytically formulated as follows:

1 o
Fy(x¢,t) ZU—?I = 0—51 lzwzyzyz—r

o))

where we have simplified w;(x;, t) to w;, as it does
not lead to any confusion.

(11)



| DF: Within the Outer Product Span Space

S Y Proposition 3. Let us define wv(x:,t,y) as
| | 2
i Data distribution under the general assumption ! exp(—"”—‘;—;‘gi') € R and w(x,t,y) as
I i v(axe,t, .
: (General Setting) g0 € Pa(R?), : e v(itft,y’)‘gqo(y) € R. If qo takes the form as in
|\ ! equation 12, the diffusion Fisher matrix of the diffused

s s s ’ distribution ¢, for ¢t € (0, 1] can be analytically formulated

as follows:
1 o
| . o Fy(xi,t)=—1— —; [/w(y)nydqo

DF resides within a space spanned by an infinite ¢ t =

outer product basis of score and initial data. _(/w(y)ydqo) (/w(y)ydqo) ]

|
> (13)

where we simply write w(x+,t,y) as w(y), as long as it
does not lead to any confusion.



PART THREE

DF Trace Matching



I DF Trace Matching

The log-likelihood of DM can be computed through:

1 t ty
Ologac(ent) (a% (f(t)wt ~ 28 (1), 1ogqt(wt,t>))

1, . 0
= —tr ((f(t)I — 59 (t) Bx:2 log Qt(mtat)>)
N BN [ 1 _ We need to access the
=—f{t)d - S5~ (Fi(ws, 1)) | " trace of diffusion Fisher!

(14)
Current VJP-based method:

A time complexity of 0(d?)



I DF Trace Matching

Our approach for accessing the trace of diffusion Fisher:

L Learned via a trace network
Proposition 5. In the same context as Proposition

1, the trace of the diffusion Fisher matrix for the Algorithm 1 Training of DF-TM Network
diffused distribution g;, where ¢ € (0, 1], is given 1: Input: data space dimension d, initial network ¢ (-, -) : R* x
by: > R — R, noise schedule {a: } and {0+ }.
I_ 2: repeat
, TS I{ 2 3 xo~ qu(wO)({ .
d « | | 4: t ~ Uniform({1,...,T
tr (Fi(@e, 1) = —5 = U—fl Zwil|yi||2|_: > wiys ] I 5 e~N(0,I)
t t : 5
i____ll \_L '61'6)-J 6: T = oo + Ot€ )
2
1 7:  Take gradient descent on Vg ’te (¢, 1) — %
8: until converged

9: Output: tg(-,-)

Approximated via learned score

Proposition 2. Given the diffusion training loss in

equation 4, and if gg conforms to the form presented Proposition 6. V(x,t) € R X Rxo, the optimal
in equation 10, then the optimal gy (x4, t) can accu- to(@¢, t)s trained by the objective in Algorithm 1 are
rately estimate ) . w;y;. equal to é ¥ @t ||yz||2



I DF Trace Matching

Our DF-TM method:

d o
tr (Ft(wt,t)) ~ ? = '—fr

t t

Training stability of our DF-TM method:
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Figure 1: (a) The training loss of DE-TM for SD-1.5 and SD-
2base. It demonstrates commendable convergence behavior. (b)
The trade-off curve of NLL and Clip score of SD-1.5 and SD-2base
across various guidance scales in [1.5, 2.5, ..., 12.5, 13.5]

(d *tg(xe,t) — ||yo(x:, t)”Z)

(17)

Theoretical analysis of our DF-TM method:

Proposition 7. Assume the approximation error on
to(x¢,t) is 61 and on eg(xy,t) is d2, then the ap-
proximation error of the approximated Fisher trace

2
in equation 17 is at most 2‘—%61 + aigég



I DF Trace Matching

Experiments on our DF-TM method:

Methods The relative error of NLL evaluation
t=10 t=08 t=06 t=04 t=02 t=00
VIJP (eq. 15) 6.68% 5.79% 10.46% 20.13% 51.14% 70.95%
DF-TM (Ours) | 3.41% 4.56% 413% 428% 533% 5.81%

Table 2: Comparison of the VIP method and our DF-TM in
terms of the diffusion Fisher trace evaluation error across different

timesteps. The error is evaluated on the 2-D chessboard data with
the VE schedule.
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Figure 2: Our DF-TM method facilitates the effective evaluation of the NLL of generated samples with varying seeds. It can be
demonstrated that a lower NLL signifies a region of higher possibility, thereby consistently indicating superior image quality.



PART FOUR

DF Endpoint Approximation



I DF Endpoint Approximation

When doing adjoint ODE, we need to access the
matrix multiplication of the diffusion Fisher:

Consider optimizing a scalar-valued loss function £(-) :
R< — R, which takes x in the data space as input. Adjoint
guidance is implemented by applying gradient descent on

x; in the direction of %Sg—(mtn The essence of adjoint
guidance is to use the gradient at ¢ = 0 and follow the
adjoint ODE (Pollini et al., 2018; Chen et al., 2018) to

compute \; := %gg—imtn fort > 0.

dA _ 7 Ohs (zt) y _ L)

= il R 18
dt B:Bt , 8.’30 ( )

The current method mainly uses the
VJIP-based method, which needs time-
consuming auto-dif ferentiation.

1 Oeg (x4,t)

F(mht)TAt ~ oy (9:1:t At
1 9(eo (@, D)|A)]
Ot Bazt



I DF Endpoint Approximation

Our DF-EA method:

s Theoretical approximation error bound:
F(mt,t) At

2 T Proposition 8. Assume that the approximation error
~ 1 (el T i 220 N " . 3
| —=I- a_f E wiYiYi — Yo(xe,t)Yo(x1,t) At on €y (x4, t) is d2, the approximation error of the DF-

EA linear operator, as referenced in 20, is at most

2 T 2
~ (%I B % (wowg — (e il t)T)) A % (2D§ + \/362) when measured in terms of the
: ? 2t 5 Hilbert—Schmidt norm.
(87 (87}
IFAt - 0__2 (wO, At) To + 0__; (ge(mht)? At) ge(mt) t)
t t t

(20)



I DF Endpoint Approximation

Experiments on our DF-EA method:
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Figure 4: Visual comparison of DF-EA (Ours) and VJP in the adjoint improvement task on (left) SAC aesthetic score and
(right) Pick-Score. DF-EA consistently generates images with better visual effects and reduced time expenditure.



PART FIVE

DF Optimal Transport



| DF Optimal Transport

Numerical test for the OT property of PF-ODE map

Corollary 1. Denote the diffeomorphism deduced by the
PF-ODE in equation 5 as follows

Tt :R" - Rz —> 2, VE>s5>0. (21)
The diffeomorphism 7’s r is a Monge optimal transport
map if and only if the normalized fundamental matrix for
B(t) = B(t,x) at s is s.p.d. for every PF-ODE chain

that starts from a 1 € R?. where

£0] 1+ 30 [Fam

(o) (o)
(22)

The definition of the normalized fundamental matrix is
deferred to Appendix A.10.

B(t,2.) = [f(t) -

Algorithm 2 Numerical OT test for PF-ODE map

1:

L0 =1 O IR s b

Input: initial data {y;}2_,, noise schedule {c;} and {0},
discretization steps M.
Initialize Ay = I, &y ~ N(0,071).
fori=M,M —1,--- ,1do
dt=t,—1 — .
Calculate B; by equation 22.
A;_1=A; +dt* A] B, {solve fundamental matrix.}
x;—1 = PF-ODE Solver(x;, 1)
end for

Output: Ay. {The result fundamental matrix.}




| DF Optimal Transport

Numerical OT verification results of
common noise schedules:

Initial Data Single-Gaussian Affine Non-affine
Noise Schedule Asym. OT Asym. OT | Asym. OT
(Song & l-Evrrl?lon 2019) || 0% v | 0.00% v | 2528% X
VP
(Ho et al., 2020) 0.00% v 0.00% v | 2336% X
sub-VP

(Song et al., 2020) 0.00% v 0.00% v | 1384% X
(KarrasF:elt)z[ 2022) 0.00% v 0.00% v | 27.09% X

Table 3: Comparison of numerical OT verification results of four
commonly used noise schedulers with different initial data.



THANKS!

Codes repository: https://github.com/zituitui/BELM
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