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 Introduction and Background 

Survival Data. A survival dataset � is represented as a set of triplets {(��, ��, ��)}}�=1� , where �� ∈ ℝ� 

denotes the set of covariates in � dimensions, �� = min(��, ��)∈ℝ+ represents the observed time, and �� 

is the event indicator. If the event of interest is observed, e.g. death, then �� < �� and the event indicator is 

set to �� = 1, otherwise, the event is censored and �� = 0.
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 Introduction and Background 

Survival Models. Survival models can be broadly classified into three main categories: parametric, 

semiparametric and nonparametric models.

 Parametric models assume that the survival PDF follows a specific probability distribution, e.g., 

exponential (Feigl & Zelen, 1965), log-normal (Royston, 2001) or Weibull distribution (Scholz & Works, 1996).  

 Semiparametric methods, such as the Cox proportional hazards model (Cox, 1972), assume a proportional 

hazards structure without specifying a baseline hazard distribution, which offers robustness and 

interpretability.

 Nonparametric models, such as DeepHit (Lee et al., 2018) and CQRNN (Pearce et al., 2022) directly 

modeling conditional distributions by discretizing survival CDFs.
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 Motivation and Contribution

 Parametric and semiparametric models deliver smooth survival CDFs but falter when data deviates from 

their strict assumptions, compromising accuracy.

 Nonparametric models show their strong performance at quantile regression tasks, but their discrete 

outputs (point- or step-wise survival CDFs) restrict flexibility.

Thus, our goal is to introduce a simple but efficient and flexible method for survival modeling. 
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 Motivation and Contribution

In this paper, our contributions are listed below: 

 We introduce a flexible parametric survival model based on the Asymmetric Laplace Distribution (ALD), 

which offers superior flexibility in capturing diverse survival patterns compared to other distributions 

(parametric methods).

 The continuous nature of the ALD-based approach offers great flexibility in summarizing distribution-

based predictions, thus addressing the limitations of existing discretized nonparametric methods. 

 Experiments on 14 synthetic datasets and 7 real-world datasets in terms of 9 performance metrics 

demonstrate that our proposed framework consistently outperforms both parametric and nonparametric 

approaches in terms of both discrimination and calibration.
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 Methods 

Asymmetric Laplace Distribution (ALD, Kotz et al, 2012). A random variable � is said to have an 
asymmetric Laplace distribution with parameters (�,�,�), if its PDF is:
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where �, � > 0, and � > 0, are the location, scale and asymmetry parameters. Moreover, its CDF can be 
expressed as:
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 Methods 

Network Architecture. 

Loss Function.                       ℒALD =− �∈���ALD(��|��) − �∈���ALD(��|��)

where �ALD(∙) and �ALD(∙) are the PDF and survival function of Asymmetric Laplace Distribution, �� and 
�� are the subsets of  � = �� ∪�� for which � = 1 and � = 0.
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 Comparison between our Method and CQRNN

Corollary 3.2.  The Asymmetric Laplace Distribution, denoted as �ℒ(�,�,�), can be reparameterized as 

�ℒ(�,�,�) to facilitate quantile regression (Yu & Moyeed, 2001), where � ∈ (0, 1) is the percentile parameter 

that represents the desired quantile. The relationship between � and � is given by � = �2/(�2 + 1).

The widely used pinball or checkmark loss (Koenker & Bassett Jr, 1978) in the quantile regression literature (e.g., 
CQRNN, Pearce et al., 2022) is essentially the maximum likelihood estimation of �ℒ(�,�,�) up to a 
constant. CQRNN optimizes a model with the pinball loss to predict �� for a predefined collection of quantile 
values, e.g., � = {0.1, 0.2, . . . , 0.9}:

ℒQR(�;��, �) =  
�(� − ��)           if � ≥ ��
(1 − �)(�� −�)  if � < ��

= (� − ��)(� − �[�� > �])

The maximum likelihood estimation of �ℒ(��,�, �) is:

log� − log[q(1 − q)] +
1
� 
�(� − ��)           if � ≥ ��
(1 − �)(�� −�)  if � < ��
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 Experimental Results

ICML 2025 Learning Survival Distributions with the Asymmetric Laplace Distribution



 Code and Reference

Code: https://github.com/demingsheng/ALD

Thank you for your attention!
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