Benchmarking Abstract and Reasoning Abilities Through A Theoretical Perspective

MAC:Media Analytics & Computing Laboratory

Xiamen University

The Problem & Motivation

LLMs: Smart or Memorizing?

High scores (e.g., GSM8K) ≠ True Abstract Reasoning.

Current tests: Surface patterns, not deep understanding.

Goal: Rigorously test true LLM abstract reasoning.

Our Approach & Metrics

Theory-Driven Evaluation

Abstract Reasoning: Extract Patterns $(f) \rightarrow \text{Apply Rules } (Re)$.

Metrics:

Γ: Base Accuracy.

Δ:Memory Reliance(Γ original - Γ remapped).

High Δ = Memorization.

Key Design: Symbol Remapping (e.g., '1+1=2' \rightarrow 'A op A=B')

Tests understanding beyond token matching.

Key Findings

LLMs: Memorization Over Abstraction

- **1. Failures**: Widespread in non-decimal arithmetic(**NBR**).
- **2. High** Δ : Rely on operand symbols (memory), not abstract patterns.
- **3.** CoT Trade-off: \uparrow Performance often $\rightarrow \uparrow$ Memory Dependence.

Conclusion

Our robust theoretical framework rigorously assessed LLM abstract reasoning. By defining abstract reasoning's interplay, we validated metrics (Γ, Δ) and designed a symbol remapping benchmark for genuine generalization. Evaluations revealed a critical LLM deficit: a profound lack of abstract symbolic reasoning, driven by significant memory dependence and limited generalization, even with advanced techniques.

Impact: Our tools & benchmark guide development of truly intelligent LLMs.

Open Source: github.com/MAC-AutoML/abstract-reason-benchmark

Thank You!