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Motivation

➢Resilience of a system

➢ In Human teamwork, we allow some errors made by teammates

➢How about LLM teamwork?

➢Possible factors

1. Organization structure
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2. Downstream tasks 3. Error severity/type



Overview
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➢We introduce AutoTransform and 

AutoInject, to study the influence of faulty 

agents on different tasks and structures.

➢We introduce Challenger and Inspector to 

improve system resilience



Normal Agent Collaboration
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➢Questions can be given to either All agents or Specific agents

➢Systems have different division of labor (analyst, coder, tester, etc.)

➢Typically, answers are from a Single agent
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Introducing Malicious Agents
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1. Agents with any purposes

2. Keep functionalities

3. Output stealthy errors
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Introducing Errors Directly
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➢AutoTransform cannot control 

precise error rates and types

➢AutoInject intercepts messages 

and injects errors directly
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Experimental Settings

7

➢Downstream tasks (4)

➢Code Generation: HumanEval (arXiv 2021, 5k+ citations)

➢Math Problem Solving: CIAR (EMNLP 2024)

➢Translation: CommonMT (EMNLP Findings 2020)

➢Text Evaluation: FairEval (ACL 2024)

➢Multi-Agent Systems (6)

➢Linear: MetaGPT (ICLR 2024); Self-collaboration (TSE 2024);

➢Flat: Camel (NeurIPS 2023); SPP (NAACL-HLT 2024);

➢Hierarchical: MAD (EMNLP 2024); AgentVerse (ICLR 2024);
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Conclusions on Structures and Tasks
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1. Hierarchical structure performs the best with faulty agents

2. Rigorous tasks are more sensitive to the errors
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Introducing Errors to Improve Performance
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1. Double Checking: more errors 

make existing ones more visible

2. Divergent Thinking: agents with 

diverse opinions can facilitate 

problem solving
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Key Takeaways on Error Rates and Types
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1. Increasing errors in a single message has a bottleneck

2. Semantic errors bring more performance drop than syntactic errors
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Improvement Methods
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1. The Challenger: modify agents’ profile to enable them to challenge others’ results

➢AutoTransform: modify agents’ profile into malicious

2. The Inspector: inspect all messages in the system and correct the erroneous ones

➢AutoInject: intercept messages to inject errors

➢Our defense methods can recover partial performance under malicious agents
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Thank you!
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