

NeuralCohort: Cohort-aware Neural Representation Learning for Healthcare Analytics

Changshuo Liu, Lingze Zeng, Kaiping Zheng, Shaofeng Cai, Beng Chin Ooi, James Wei Luen Yip

Speaker: Changshuo Liu

National University of Singapore

- Electronic health records (EHR) consisting of patient demographics and temporal medical features are critical for advancing patient care in healthcare.
- Current EHR learning methods often overlook the in-depth analysis of patient groups with shared features, an approach typically referred to as cohort study.

Fig 1. EHR Data Structure

Patient

Limitations

- Coarse-grained Cohort Division
- Fall short of delving into the in-depth analysis of patient cohorts
- NeuralCohort, a cohort-aware neural representation learning method for healthcare analytics
 - Fine-grained Cohort Division
 - Local intra-cohort and global intercohort information exploitation

Temporal Modeling Representation Learning Pseudo Similarity

visit

Medical Codes
Hierarchy

1 Pre-context Cohort Synthesis Module

2 Biscale Cohort Learning Module
(b) Paradigm of NeuralCohort

Cohort Learning

Cohort Fusion

Prediction

Fig 2. Coarse-grained Cohort vs. NeuralCohort

Fig 3. Overview of NeuralCohort

- Three real-world EHR datasets: MIMIC-III, MIMIC-IV, Diabetes 130.
- Two medical tasks: cross-visit Hospital Readmission Prediction and within-visit Long Length-of-Stay Prediction.
- Well-established backbone models are used to derive initial representation.
- Baselines will be used to enhance the backbones for fair comparison.

Main Results on MIMIC-III dataset

Table 1. Overall performance of NeuralCohort against baselines for readmission prediction on the MIMIC-III dataset.

Model	Readmission Task on MIMIC-III			
	AUPRC	AUROC	Accuracy	
ClinicalBERT	0.630±0.005	0.651±0.006	58.7%±0.5%	
+ KNN	0.628 ± 0.002	0.651 ± 0.002	58.6%±0.2%	
+ K-Means	0.629 ± 0.001	0.650 ± 0.001	58.4%±0.3%	
+ DEC	0.632 ± 0.005	0.654 ± 0.002	58.4%±0.1%	
+ DEKM	0.638 ± 0.003	0.659 ± 0.005	58.9%±0.2%	
+ GRASP	0.618 ± 0.002	0.617 ± 0.001	56.2%±0.1%	
+ DGLoS	0.635 ± 0.003	0.533 ± 0.002	58.0%±0.4%	
+ IDC	0.638 ± 0.003	0.657±0.004	59.0%±0.3%	
+ NeuralCohort	0.662 ± 0.003	0.681 ± 0.005	$61.2\% \pm 0.4\%$	
Med2Vec	0.554±0.005	0.614±0.004	54.1%±0.7%	
+ KNN	0.541 ± 0.004	0.598 ± 0.003	54.9%±0.5%	
+ K-Means	0.544 ± 0.005	0.600 ± 0.004	54.5%±0.4%	
+ DEC	0.550 ± 0.003	0.611 ± 0.002	54.3%±0.5%	
+ DEKM	0.547±0.004	0.608 ± 0.006	54.6%±0.4%	
+ GRASP	0.542 ± 0.003	0.601 ± 0.006	53.8%±0.3%	
+ DGLoS	0.559 ± 0.004	0.542 ± 0.002	54.5%±0.5%	
+ IDC	0.562 ± 0.004	0.622 ± 0.003	54.5%±0.4%	
+ NeuralCohort	0.574±0.003	$0.634 {\pm} 0.005$	56.9%±0.2%	
MiME	0.543±0.006	0.602±0.005	56.8%±0.5%	
+ KNN	0.543 ± 0.004	0.610 ± 0.003	56.5%±0.5%	
+ K-Means	0.546 ± 0.004	0.605 ± 0.006	56.5%±0.7%	
+ DEC	0.549 ± 0.007	0.608 ± 0.004	57.3%±0.9%	
+ DEKM	0.548 ± 0.002	0.611 ± 0.003	57.1%±0.5%	
+ GRASP	0.530 ± 0.009	0.589 ± 0.010	57.2%±0.9%	
+ DGLoS	0.551 ± 0.006	0.543±0.004	57.6%±0.7%	
+ IDC	0.542±0.006	0.605 ± 0.003	57.2%±0.4%	
+ NeuralCohort	0.568 ± 0.004	0.629 ± 0.003	58.6%±0.3%	

Table 2. Overall performance of NeuralCohort against baselines for long LOS prediction on the MIMIC-III dataset.

Model	Long LOS Task on MIMIC-III			
	AUPRC	AUROC	Accuracy	
ClinicalBERT	0.658±0.002	0.590±0.002	59.7%±0.3%	
+ KNN	0.659 ± 0.002	0.594 ± 0.001	59.9%±0.4%	
+ K-Means	0.655±0.001	0.590 ± 0.002	59.8%±0.3%	
+ DEC	0.652±0.008	0.603±0.009	60.2%±0.3%	
+ DEKM	0.661±0.003	0.592 ± 0.002	60.1%±0.3%	
+ GRASP	0.665±0.002	0.584 ± 0.003	60.0%±0.4%	
+ DGLoS	0.685±0.005	0.548 ± 0.004	61.5%±0.9%	
+ IDC	0.681±0.004	0.612 ± 0.003	60.2%±0.4%	
+ NeuralCohort	0.738 ± 0.003	0.671 ± 0.004	63.7%±0.7%	
Med2Vec	0.908±0.001	0.894±0.001	64.4%±0.3%	
+ KNN	0.876±0.002	0.876±0.001	75.1%±0.4%	
+ K-Means	0.877±0.002	0.875±0.003	74.8%±0.3%	
+ DEC	0.886 ± 0.004	0.889 ± 0.006	75.4%±0.7%	
+ DEKM	0.903±0.002	0.897±0.004	73.8%±0.4%	
+ GRASP	0.903±0.003	0.887±0.002	69.0%±0.5%	
+ DGLoS	0.907±0.004	0.837±0.006	75.9%±0.5%	
+ IDC	0.906±0.003	0.899 ± 0.003	73.2%±0.4%	
+ NeuralCohort	0.919 ± 0.002	0.906±0.004	$80.7\% \pm 0.3\%$	
MiME	0.913±0.003	0.904±0.003	78.4%±0.5%	
+ KNN	0.910±0.002	0.895±0.003	80.2%±0.4%	
+ K-Means	0.904±0.003	0.891 ± 0.002	79.0%±0.3%	
+ DEC	0.912±0.005	0.907±0.008	79.6%±0.4%	
+ DEKM	0.911±0.005	0.908 ± 0.007	79.6%±0.4%	
+ GRASP	0.898 ± 0.004	0.896 ± 0.003	81.1%±0.4%	
+ DGLoS	0.917±0.002	0.854 ± 0.008	80.7%±0.3%	
+ IDC	0.919±0.005	0.910±0.004	80.3%±0.2%	
+ NeuralCohort	0.936 ± 0.004	0.923 ± 0.002	82.8%±0.2%	

Comparison between NeuralCohort and traditional cohorts

Table 4. Comparison between traditional cohorts and NeuralCohort on the backbone ClinicalBERT and Med2Vec for readmission prediction on the MIMIC-III dataset.

Model	MIMIC-III		
	AUPRC	AUROC	Accuracy
ClinicalBERT	0.630	0.651	58.7%
$+MC_G$	0.629	0.651	58.5%
$+MC_A$	0.631	0.651	58.3%
$+MC_{D}^{T}$	0.629	0.652	58.7%
$+MC_{H}^{2}$	0.621	0.643	58.1%
+ NeuralCohort	0.662	0.681	61.2%
Med2Vec	0.554	0.614	54.1%
$+MC_G$	0.546	0.611	54.3%
$+MC_A$	0.548	0.612	53.4%
$+MC_D$	0.557	0.619	54.5%
$+MC_{H}^{-}$	0.551	0.616	53.7%
+ NeuralCohort	0.574	0.634	56.9%

- Gender(G)
- Age(A)
- Diabetes diagnosis (D)
- Hypertension diagnosis (H)

Traditional medical cohorts tend to perform comparably to, and occasionally worse than the backbones.

Fig 4. visualization of eight-cohort points

NeuralCohort: Cohort-aware Neural Representation Learning for Healthcare Analytics

Thanks!