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® Vision-Language Models (VLMs)

» Pre-trained VLMs demonstrate remarkable performance in open-set scenarios, where model
handles novel categories without predefined labels.

m Their versatility makes them highly useful across a wide range of robotics applications
especially in unpredictable environments.
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Fig 1. Architecture of YOLO-World!!] Fig 2. Architecture of SED!

[1] T. Cheng, et. al. “YOLO-World: Real-time open-vocabulary object detection,” CVPR’24.
[2] Xie, Bin, et al. "SED: A simple encoder-decoder for open-vocabulary semantic segmentation," CVPR’24
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® Need for Prompt Tuning

= Despite their strong zero-shot capabilities, pre-trained VLMs often require adaptation to
perform well on specific downstream tasks due to their generic embeddings.

= Prompt tuning enables this adaptation by optimizing textual prompts while keeping the
model frozen, making it an efficient and scalable solution.

m This approach enhances task performance without the need for full model fine-tuning.

“[CLASS]” “a bad photo of a [CLASS]” “a photo of a [CLASS] taken on a cloudy day”

7: honging

Fig 3. Performance of YOLO-World" combined with MobileSAMBI under different prompts.

[1] T. Cheng, et. al. “YOLO-World: Real-time open-vocabulary object detection,” CVPR’24.
[3] C. Zhang, et. al. “Faster segment anything: Towards lightweight SAM for mobile applications,” arXiv'23..
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® Preliminary: Prompt Tuning of CLIP model
= CLIP* maps images and texts into a shared embedding space using separate visual and

textual encoders.

= In image classification, textual prompts like “a photo of a [CLASS]” are embedded and
compared to the visual feature for prediction.
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e s¢(D | the set of classes, and s, () denotes the cosine similarity between the

image
features

Fig 4. Architecture of CLIP™!

- visual and textual embeddings of the class [ generated by t.
naximize the score for the

ground-truth class

[4] A. Radford, et al. “Learning transferable visual models from natural language supervision,” ICML'21.
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® Decomposing Specialization and Generalization

m The expected error e (p) of a predictive distribution p in an arbitrary target domain Dy:
er(p) = Ex,y)~pr [—logp(y)],
where y is the ground-truth label for the image x.

m Definition 3.1 (Mixture Model) Let K + 1 different prompts be given by 7" = {t,, t1, -+, tx}, and let m =
{my, 1y, , g} denote a set of non-negative weights satisfying Yie, 7; = 1. The mixture model pF is
defined as a weighted combination of the individual prompts:

exp (Z;-[{:g ?TiSti(U/T)
> ey OXP (Zfig TiSt, (P)/T) |

Ref: Probability of the model with prompt t
) = e (/)
Zz'ey exp (s¢(l')/7)

pr(l) =

= Theorem 3.2. The expected error of the mixture model p7 can be bounded as follows:
* Please refer to Appendix A for details.

K
er(PF) <D mier(p,).
1=0
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» Lemma 3.3. The expected error of the mixture model p7 is given by:

Z)\ET

where 1; = « [(x,¥) € Dr,]: the probability that a sample from D belongs to the sub-domain Dr..

)~

Target domain Dy Wﬂ

m Based on Theorem 3.2, the error of the mixture model can be upper-bounded as follows:
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Ref: Theorem 3.2

K
er(PF) < ) mier(pr,)-
1=0

-

"

generalization /
error

where 7!": the mixing weights of the prompt t; for its own domain Dr;m

i) when applied to the domain Dr,.

out

: the mixing weight of the prompt ¢;(j #
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® Decomposing Specialization and Generalization

K
A‘]‘l‘) < s 7_l_z'n €T, (Pt 4+ 7_{_()ut
F)<D A | Z

1=0
specialization
error

;éz

-
generalization
error

/

Inaccessible Train domains

/—/%
Target domain Dy ’gﬂ'ﬂ

t;is opt1m1zed
for domain Dy,
= Reduce €7, (pt )

= Goal: Improve both specialization and generalization in prompt tuning
= CoA-loss handles class confusion and CoA-weights adapts confidence across domains
* Domain Dz, : Unseen target domain, no labeled data available (hand-crafted prompt ¢,)

* Domain Dz, : Seen training domains with labeled data (i > 0)
* Prompt ¢t; is optimized for each training domain Dr;.
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® Confusion-Aware Loss for Specializ

IA
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Y =0
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] error JF#i
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Inaccessible Train domains

o

t;is opt1m1zed
for domain Dy,
= Reduce €7, (pt )

Target domain Dy

= Most existing methods use standard cross-entropy for the specialization in prompt tuning;:

ECE (X

ayaﬁt) —

—log pe(y).

* The loss do not explicitly address confusing cases arising from the frozen visual encoder.

* Therefore, it limits the specialization of prompt tuning.
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® Confusion-Aware Loss for Specialization

= We propose confusion-aware loss (CoA-Loss), defined as follows:
Lcoa (%, y;0t) =1 — De(y).

» The overall loss is L ompi (X, y; Pt) = Lcg + wLcoa, Where w is a hyperparameter.

s The gradients of L. mp With respect to the similarities s,(y) and s,(c # y) are as follows:
* CoA-loss induces larger gradient updates for the confusing classes.

0.0
\ oL 1
prompt N a7
= —— (1= pe(y)) (1 —wpe(y)) .

. S = = (1= pu(y) (1~ win(v))
Ség Q:%; 8£pr0mpt 1. A
) ) = —De(c) (L +wpe(y)).

nys Js¢(c # y) T

0.0 0.5 1.0 -

Asw — oo, the largest gradient update occurs
ﬁt(y) when p,(y) = 0.5

* Asw — o, the largest gradient update occurs
Fig 5. Gradient component of Ly,rompt With respect to (a) s,(y) and (b) s;(c # y), where when p,(c) = p,()
w = 0 represents standard cross-entropy.
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® Confidence-Aware Weights for Generalization without Trade-Offs

K

K
€r (ﬁ?;') < Z Ai ﬂén er, (Pt;) + Z W;mETi (ﬁt,)
i=0 =0

specialization ]; .
error J7F1
N

7
-
\ gé’llé’)‘(lll:(lfl()” )
error

= Assumption 3.4. The specialized prediction p;, for Dy, satisfies the following relationships:
ETH (Ijt’l ) < ETH (?jtji’i) and Ethiv: (Iﬁfiﬂ) < Ethi’i (fjtaj

A prediction py; optimized for a specific domain Dr, always performs better than predictions p

made by prompts optimized for other domains
The generalized prediction p;, is more effective for unseen classes.

Statistic experiment using the CIFAR-100 and the pre-trained CLIP model: " T
* 100 classes are randomly splited into 50 in-class and 50 out-class domains. £ oz 1
* The prediction with prompt trained on the in-class subset is compared 8 o

with the zero-shot on both domains. ; ol |

« p-value were p;, = 9.25 X 10712 and py,¢ = 2.06 X 10710
=>» Inequalities in Assumption 3.4 hold with strong statistical significance.
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® Confidence-Aware Weights for Generalization without Trade-Offs
= Assumption 3.4. The specialized prediction p,, for Dr, satisfies the following relationships:

€Ty, (Ijt’l ) < €Ty, (?jtji’i) and Ethiv: (Iﬁfiﬂ) < Ethi’i (fjtaj

= Optimizing m;" for in-class domains
;_" = arg min E(x:yjmﬂ.ei ["{:CE(X: Y Iﬁ?_)]

m

m

* If the specialized prediction py; outperforms the generalized prediction py;_; = n!" increases
Otherwise = m;" decreases
* Further details on the cross-entropy effect in the mixture model are provided in Appendix B.
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® Confidence-Aware Weights for Generalization without Trade-Offs
= Assumption 3.4. The specialized prediction p,, for Dr, satisfies the following relationships:

€Ty, (Ijt’l ) < €Ty, (?jtji’i) and Ethiv: (Iﬁfiﬂ) < Ethi’i (fjtaj

= Optimizing 7" for out-class domains
?T-?m — arg HﬂHELK-'y}NDSi [‘CEHT(X;ﬁtwﬁtu)] 3

out
T

‘E‘El]t — Inax (O,H (ﬁt{}) - H (ﬁt;) _|_ d} 3

where d is a margin and H(p) is the normalized entropy of p over the out-class set, i.e. H(p) =
% youe —p(c) logp(c) /log| Y|

* It makes specialized predictions less confident than generalized ones.

U

High entropy Low entropy
=» Uncertain prediction = Confident prediction
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® Experiments: Base-to-New Generalization

Is CoCoA-Mix effective at balancing specialization on base classes and generalization to new
classes?

= Each dataset is evenly split into two disjoint subsets: Base for tuning and unseen New

Tab 1. Performance comparison on 11 datasets in the base-to-new benchmark. H represents the harmonic mean.

AVERAGE IMAGENET CALTECHI0] Foopl01 FGVCAIRCRAFT SUN397

METHOD BASE NEW H BASE NEW H BASE NEW H METHOD BASE NEW H BASE NEW H BASE NEwW H
CLIP 65.14 68.78 6682 64.43 60.04 62.16 90.64 91.16 90.90 CLIP 83.58 84.95 84.26 19.51 24.60 21.76 66.76 70.52 68.59
CoOr 77.23 68.56 7133 | 73721029 64941087 6905 | 9716 L 0.16 93921080 9551 CoOr 89.1910.19 88451089 8881 | 26171789 1950 L1194 1146 | 77371066 7206 1156 7460
PROGRAD 78.74 72.19 7506 | TA81 1029 6668 1026 7051 | 97501008 9549 1 027 9648 PROGRAD 89331008 89931058 8963 | 34211199 28531208 3097 | 79162036 7434 1075 7620
KaCoOr 78.67 74.62 7638 | 744 1008 69431029 7231|9761 1033 94801045 96.18 KaCoOr 90.26+0.11 91.25+0.15 9075 | 3343 1056 32271 1.19 3281 | 7071024 76781024 7791
MAPLE 77.14 72.91 7469 | 7540 1029 T043+0.12 7283 | 97471031 9377 L 111 9557 MAPLE 89371054 90771054 906 | 31671066 33131238 3229 | 78331021 7767045 7300
DEPT 79.20 66.36 7I78 | 73501022 70001016 7L71 | 97831005 9583+025 9682 DEPT 89801008 88101016 8894 | 3593+093 24331009 2901 | 79.101 022 6727 1046 7270
COA-LOSS 79.12 73.66 76.15 | 7568000 6798 1031 7162 | 97941014 94541024 96.21 COA-LOSS 90.11 1018 90871042 9049 | 3391 1068 32471037 3317 | 78701025 75431072 T77.03
CoCoA-MIx 79.31 75.10 T703 | 75471009 68921010 7204 | 9802+003 94391010 9617 COCOA-MIX | 90.09 L 016 9093 1009 9050 | 3351 1028 3415+0.14 3383 | 7851 L 017 7660 L1024 774

OXFORDPETS STANFORDCARS FLOWERS102 DTD EUROSAT UCF101

METHOD BASE NEW H BASE NEW H BASE NEW H METHOD BASE NEW H BASE NEW H BASE NEwW H
CLIP 90.01 94.24 9207 55.37 66.65 60.49 69.23 73.90 71.49 CLIP 53.24 .71 5397 54.79 66.21 59.96 69.03 69.61 69.32
CoOr MI0L073 94421417 9416 | 69541075 71391128 7044 | 90601150 67001104 T77.01 CoOr 71221113 53621345 6103 | 79931107 64791636 7119 | 80581066 64111281 7132
PROGRAD 95001031 97361042 9616 | 71451039 73161058 7229 | 91361063 74921090 38232 PROGRAD 72071029 50561243 5935 | 81291336 6981 1556 7480 | 80971029 73321185 7693
KaCoOr M65 1015 97591008 9610 | 6864 1035 74961053 7166 | 90091063 7631 1042 8263 KaCoOr 72921105 59141153 6528 | 83201072 T051+£930 7561 | 80091024 775040 739
MAPLE MB0 109 97671021 9621 | 67971029 74401045 7104 | 88031162 73431049 R80.06 MAPLE 7040 1 257 5840 L300 6371 | 7650 L 385 5570 1319 6427 | 7857 1L 211 76601156 7753
DEPT 04001029 88631078 9123 | 71831052 59271076 6494 | 9453+053 66301142 7792 DEPT 7440+083 53131107 6198 | 7870 L 156 50531571 6108 | 8157084 66531087 7328
COA-LOSS 9490 L1049 9793008 9639 | 7270 L 011 7307 1127 7287 | 8889117 75581131 B8167 COA-LOSS 73231202 58091081 6476 | 83381049 70071249 7609 | 80831080 74221091 7738
COCOA-MiIX | 95.16+0.38 9760 1009 9636 | 73.09+025 7497+008 7401 91041179 T7737+038 8364 COCOA-MIX | 7280 1 189 64.20+125 6825 | 8349+066 6911 1310 7554 | 81281095 Ti75+024 7947
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® Experiments: Cross-Dataset Transfer
Is CoCoA-Mix capable of transferring learned knowledge etfectively across different datasets?

» The prompt is trained on ImageNet with 1,000 classes and tested on 10 different datasets with
non-overlapping classes

Tab 2. Performance comparison in cross-dataset transfer.

METHOD SOURCE TARGET H
CLIP 66.73 64.89 63.97
CoOP 69.06 = 0.43 59.88 61.52

PROGRAD 70.21 = 0.16 62.36 63.58

KGCoOP 70.52 = 0.05 64.45 65.17
MAPLE 69.53 = 0.39 65.24 65.26
DEPT 63.03 = 0.09 65.06 64.42
CoCOA-Mix 70.85 % 0.09 65.27 66.07

m Detailed results are provided in Appendix C.
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Is CoCoA-Mix effective in mitigating forgetting and adapting to new tasks in few-shot class-

incremental learning?

= The number of prompts K + 1 was increased incrementally, with each prompt ¢; specializing

1N its session.

Tab 3. Performance comgarison on CIFAR100 in the FSCIL benchmark. Mean represents the average accuracy across all sessions, and PD indicates the

performance difference between the first and last sessions.
ACC(%)T ,
METHOD 0 1 2 3 4 5 6 7 g | MEANT PDJ
L2P 899 86.0 81.8 80.3 &80.0 746 732 726 650 | 782 249
CLIP-ZSL — = — = — — — — — 77.9 —
CoOp-FSCIL 88.6 789 775 T6.0 T76.8 783 792 798 793 | 794 9.3
FACT w/ CLIP 87.8 &84.0 814 780 778 763 750 725 719 | 783 15.9
FSPT-FSCIL 86.9 &83.1 81.9 &80.7 &0.4 799 80.1 799 794 81.4 7.5
CoCoA-MIxX (OURS) | 83.2 85.6 84.6 82.7 828 825 823 81.8 80.8 | 835 74
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® Experiments: Ablation Studies
Does CoA-loss improve specialization of prompt tuning?

79.8

!
g
o

-1

=
AN
\

FL GCE CE CE+MAE CE+CoA
Fig 6. Performance comparison across various loss functions

Is CoA-loss truly etfective in handling confusing samples?

100.0 OxfordPets 7.45%
a4 57.75 Flowers102 5.98%
¥ , 2 o UCF101 1.65%
= 99.8 ,:Ec?’ = 57.50 Caltech101 3.06%
% é . ; . FuroSAT : 2.02%
90.6 = Eh S Ql.20 J = ImfigeNclt 0.36“‘/::
— CE4+CoA 1 —— CE+CoA . i —— CE+CoA FGVCAirCraft 0.33%
0 50 00 0 50 wo T 50 100 StanfordCars [ 0.25%
training epoch training epoch training epoch -0.27% Food101
-0.91% SUN397
(a) (b) (c) (d) 156% DTD

Fig 7. (a) Proportion of predictions by zero-shot CLIP on EuroSAT. (b) Accuracy on easy test
samples correctly predicted by zero-shot CLIP. (c) Accuracy on confusing test samples
misclassified by zero-shot CLIP with a probability gap below 0.2. (d) Accuracy on all test samples.

Fig 8. Performance improvement on confusing samples
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® Experiments: Ablation Studies
Does CoA-weights improve generalization of prompt tuning?

Tab 4. Effect of CoA-weights on Base and New classes.

in pout BASE  NEW H

X X 79.12 73.66 76.15
v X 7930 7381 76.32
v v 7931 75.10 77.03

T

Are CoA-weights sensitive to the way the out-class set is generated?

Tab 5. Ablation study comparing different strategies for generating unseen classes. The table reports accuracy on New

classes.

| NONE RANDOM STRING RANDOM STRING AND WORD RANDOM WORD

ACCURACY | 74.12 75.00 75.04 75.10

16
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Thanks for your kind attention
ds.hong@kaist.ac.kr
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® Proof of Theorem 3.2 4 Go Back to Main

Consider K + 1 individual prompts T = {to.t1,...,tx} and a mixture model pF with non-negative weights m = The first term is rewritten using the definition of the individual predictive distribution p¢, for the prompt ;. given as
{mo,m1,-.., Tk}, where ZT — o7 = L. Let Dy be an arbitrary target domain. The expected error eT(pT) of the mixture e, (y) = exp(se, (1)/7) _as follows:
model on the target domain is defined as follows in terms of the Kullback-Leibler (KL) divergence: ' Dy exp(se, (1)/7

E(x y)~Dy |: Z?rtsh(y )/ T+ Zrllogz exp (s, (1) /T)]
er(PT) = Eix y)~py. [— log T (¥)] ,

ey
K
=FE/y o — i | 8¢, T —log exp (s, (1) /T
where ¥ is the ground-truth label for the image x. Cey)~Dr [ ; ' ( u(y)/ bl,%) P (s (l)/ ))]
Using the definition of the mixture model, 57 (y) = (o st (0)/7)

the expected error can be decomposed into
Tvrey op(Si, mise, (1)/7) P P

two terms as follows:

K
= E(x,y)~Dr [—Z Ti (log exp (se,(y)/7) —log > exp (Stl(l’)/f))]

rey
K
sy 5 exp (s, (y)/7)
er () = By [~ log 7 ()] S [7 log =
o Z )~Pr Ewey exp (8¢, (I')/7)
. | exp (Zl —oTist, ( /T) K
= Bix.y)~Dy | — 108 .
! ey exp (Ll mise, (1)/7) =2 _mer(pe,)-
i=0
K
- As aresult, the first term is equivalent to a convex combination of the expected errors of the individual predictive distributions
=Exy)~Dr —Z‘rlst y)/T +locrl§}exp (Zﬂ‘n s, (I/ )] with weights 7.
Ll 4 i—
K For the second term, Jensen’s 1nequd]1ty (Jensen, 1906) can be applied to bound it, as log > exp is a convex function:
=K yypr |— Z mise, (y)/T + Z milog Z exp (8¢, (l’)/'r)}
L i=0 ey

(x.y)~Dr [ Zrzlog Z exp (s, (I')/7) + log Z exp (Z Ti5e, (
rey VEy
+Epxy)~pr [ Z milog Z exp (s¢,(1')/7) + log Z exp (Z mi8e, (1 )/T):| . K )
Irey ey i=0 < E(x,y)~D, Z milog > exp (sg, (I')/7) + Z i (log > exp (s¢,(1')7)

rey i=0 ey
<0

By combining the results from the first and second terms, we conclude that the expected error of the mixture model on the
target domain is bounded as follows:

er(PF) < > mier(pe,).-

2
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Ap p en dix B CoCoA-Mix: Confusion-and-Confidence-Aware

® Effect of Cross-Entropy in the Mixture Model 4 Go Back to Main

The derivative of the cross-entropy Lcg for the mixture model pF with respect to 7l is as follows:

OLce(x, y:pF)  O(—logpF(y))
a‘i‘T?‘ o (")TFi
-1 IpF(y)

TRy om

_ a( GXP(Zf(:onf"ti(y)/T) )

PO TN, ey oxp (i mse, (1)/7)

1 (sti(y)ﬁif(y) -7y ZP?(’)SM)) /T

) =

- ( () = > pF(l)se, (z)) /T
ley
= —(5¢,(y) — 5¢,) /7.
where 8¢, is the importance-weighted similarity defined as a weighted sum of the predicted probability of the mixture model
and the similarity derived from the prompt ;, i.e. 8¢, = Zleyﬁ?(l)sti (). For example, if the mixture model predicts class
[* with the highest probability, s¢, approximates the similarity s¢, (I*) for class {* derived from prompt t;. Here, we explain
how the CoA-weights ; for in-classes is optimized through the cross-entropy of the mixture model. For simplicity, we
assume Sg, ~ s8¢, (I*). where I* = argmax; p7(I).

In the case 8¢, () > 8¢,, the prompt £; predicts the correct class y with high similarity. Therefore, when the mixture model
misclassifies, i.e., [* # y, the other prompts t;_; provide low similarities for the correct class y. This case results in an
increase in 7; through gradient updates, encouraging the mixture model to rely more on ¢;.

Conversely, if s¢,(y) << 8¢, the prompt £; predicts the correct class y with low similarity. When the mixture model correctly
classifies, i.e. [* = y, it suggests that the other prompts £;; provide high similarities for the correct class y, while the
prompt t; underperforms. This case decreases m;, allowing the mixture model to trust the other prompts t;_.; more.
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® Cross-Dataset Transfer

Table 6. Performance comparison on 11 datasets in cross-dataset transfer.

4 Go Back to Main

20

Method SOURCE TARGET TARGET
IMAGENET AVERAGE CALTECH101 OXFORDPETS STANFORDCARS FLOWERS102
CLIP 66.73 64.89 093.27 89.18 65.56 68.05
CoOp 69.06 59.88 (—5.01) 091.06 (—2.21) 86.74 (—2.44) 59.84 (—5.72) 62.38 (—5.67)
PROGRAD 70.21 62.36 (—2.53) 92.41 (—0.86) 87.90 (—1.28) 62.94 (—2. 621 66.98 (—1.07)
KGCoOp 70.52 64.45 (—0.43) 93.55 (+0.28)  89.86 (40.68) 65.61 (40. Oa) 68.33 (40. 28)
MAPLE 69.53 65.24 (40.35) 093.43 (+0.16)  89.77 (+0.59) 65.70 (+0.14) 71.17 (+3.12)
DEPT 68.03 65.06 (+0.17) 94.07 (+0.80) 89.43 (+0.25) 65.87 (+0.31) 69.93 (+1.88)
CoCoA-MIX 70.85 65.27 (+0.38) 03.46 (+0.19) 89.07 (—0.11) 65.59 (+0.03) 68.72 (+0.67)
Method Target
Foop101 FGVCAIRCRAFT SUN397 DTD EUROSAT UCF101
CLIP 85.43 24.81 62.61 44.09 48, 36 67.51
CoOp 83.290 (—2.14) 16.71 (—8.10) 59.40 (—3.21) 38.44 (—5.65) 39.24 (—9.12) 61.66 (—5.85)
PROGRAD 84.37 (—1. 061 17.10 (—7.71) 62.67 (+0.06) 39.87 (—4.22) 45.39 (— 2 9.‘) 63.98 (—3.53)
KGCoOp 85.83 (+0. 40) 21.18 (—3.63) 64.84 (+2.23) 44.30 (+0.21) 44.64 (—3.72) 66.39 (—1.12)
MAPLE 86.13 (+0.70) 23.27 (—1.54) 66.43 (+3.82) 44.83 (+0.74) 43.73 (—4.63) 67.93 (+0.42)
DEPT 86.27 (+0.84) 22.10 (—2.71) 65.77 (+3.16)  45.53 (+1.44) 44.00 (—4.36) 67.60 (+0.09)
CoCOA-MIx | 85.78 (+0.35) 24.10 (—0.71) 63.61 (+1.00) 46.41 (4+2.32) 48.18 (—0.18) 67.78 (+0.27)
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