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Introduction

⚫Vision-Language Models (VLMs)
■ Pre-trained VLMs demonstrate remarkable performance in open-set scenarios, where model 

handles novel categories without predefined labels. 

■ Their versatility makes them highly useful across a wide range of robotics applications, 
especially in unpredictable environments.

[1] T. Cheng, et. al. “YOLO-World: Real-time open-vocabulary object detection,” CVPR’24.
[2] Xie, Bin, et al. "SED: A simple encoder-decoder for open-vocabulary semantic segmentation," CVPR’24.
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Fig 1. Architecture of YOLO-World[1]

Object Detection

Fig 2. Architecture of SED[2]

Semantic Segmentation
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⚫Need for Prompt Tuning
■ Despite their strong zero-shot capabilities, pre-trained VLMs often require adaptation to 

perform well on specific downstream tasks due to their generic embeddings. 

■ Prompt tuning enables this adaptation by optimizing textual prompts while keeping the 
model frozen, making it an efficient and scalable solution. 

■ This approach enhances task performance without the need for full model fine-tuning.

[1] T. Cheng, et. al. “YOLO-World: Real-time open-vocabulary object detection,” CVPR’24.
[3] C. Zhang, et. al. “Faster segment anything: Towards lightweight SAM for mobile applications,” arXiv’23..
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“[CLASS]” “a bad photo of a [CLASS]” “a photo of a [CLASS] taken on a cloudy day”

Fig 3. Performance of YOLO-World[1] combined with MobileSAM[3] under different prompts.
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⚫Preliminary: Prompt Tuning of CLIP model
■ CLIP[4] maps images and texts into a shared embedding space using separate visual and 

textual encoders.

■ In image classification, textual prompts like “a photo of a [CLASS]” are embedded and 
compared to the visual feature for prediction. 

[4] A. Radford, et al. “Learning transferable visual models from natural language supervision,” ICML’21.
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Fig 4. Architecture of CLIP[4]

Probability of the image belonging to the class 𝒍:

where 𝒕 is the textual prompt; 𝜏 is the temperature scale; 𝒴 represents 
the set of classes, and 𝒔𝒕(𝑙) denotes the cosine similarity between the 
visual and textual embeddings of the class 𝑙 generated by 𝒕.

Textual prompt 𝒕

𝐬𝒕(𝑙)

∈ 𝒴 Softmax
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Appendix A

⚫Decomposing Specialization and Generalization
■ The expected error 𝜖𝑇( Ƹ𝑝) of a predictive distribution Ƹ𝑝 in an arbitrary target domain 𝒟𝑇:

where 𝑦 is the ground-truth label for the image 𝐱.

■ Definition 3.1 (Mixture Model) Let 𝐾 + 1 different prompts be given by 𝒯 = {𝒕0, 𝒕1, ⋯ , 𝒕𝐾}, and let 𝝅 =

{𝜋0, 𝜋1, ⋯ , 𝜋𝐾} denote a set of non-negative weights satisfying σ𝑖=0
𝐾 𝜋𝑖 = 1. The mixture model Ƹ𝑝𝒯

𝝅 is 
defined as a weighted combination of the individual prompts:

■ Theorem 3.2. The expected error of the mixture model Ƹ𝑝𝒯
𝝅 can be bounded as follows:

* Please refer to Appendix A for details.
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Ref: Probability of the model with prompt 𝒕
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⚫Decomposing Specialization and Generalization

■ Lemma 3.3. The expected error of the mixture model Ƹ𝑝𝒯
𝝅 is given by:

where 𝜆𝑖 = Pr
𝐱,𝑦 ∼𝒟𝑇

[ 𝐱, 𝑦 ∈ 𝒟𝑇𝑖]: the probability that a sample from 𝒟𝑇 belongs to  the sub-domain 𝒟𝑇𝑖.

■ Based on Theorem 3.2, the error of the mixture model can be upper-bounded as follows:

where 𝜋𝑖
in: the mixing weights of the prompt 𝒕𝑖 for its own domain 𝒟𝑇𝑖; 𝜋𝑗

out: the mixing weight of the prompt 𝒕𝑗(𝑗 ≠

𝑖) when applied to the domain 𝒟𝑇𝑖.
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Target domain 𝒟𝑇 𝒟𝑇0 𝒟𝑇1 ⋯ 𝒟𝑇𝐾

Ref: Theorem 3.2
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Target domain 𝒟𝑇 𝒟𝑇0 𝒟𝑇1 ⋯ 𝒟𝑇𝐾

Train domainsInaccessible⚫Decomposing Specialization and Generalization

■ Goal: Improve both specialization and generalization in prompt tuning 

■ CoA-loss handles class confusion and CoA-weights  adapts confidence across domains

 Domain 𝒟𝑇0 : Unseen target domain, no labeled data available (hand-crafted prompt 𝒕0)

 Domain 𝒟𝑇𝑖 : Seen training domains with labeled data (𝑖 > 0)
* Prompt 𝒕𝑖 is optimized for each training domain 𝒟𝑇𝑖.

“a photo of a [CLASS].”

𝒕𝑖 is optimized
for domain 𝒟𝑇𝑖
➔ Reduce 𝜖𝑇𝑖( Ƹ𝑝𝒕𝑖)
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⚫Confusion-Aware Loss for Specialization

■ Most existing methods use standard cross-entropy for the specialization in prompt tuning:

 The loss do not explicitly address confusing cases arising from the frozen visual encoder.

 Therefore, it limits the specialization of prompt tuning.
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Target domain 𝒟𝑇 𝒟𝑇0 𝒟𝑇1 ⋯ 𝒟𝑇𝐾

Train domainsInaccessible

𝒕𝑖 is optimized
for domain 𝒟𝑇𝑖
➔ Reduce 𝜖𝑇𝑖( Ƹ𝑝𝒕𝑖)
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⚫Confusion-Aware Loss for Specialization
■ We propose confusion-aware loss (CoA-Loss), defined as follows:

■ The overall loss is ℒprompt 𝐱, 𝑦; Ƹ𝑝𝒕 = ℒCE +𝑤ℒCoA, where 𝑤 is a hyperparameter.

■ The gradients of ℒprompt with respect to the similarities 𝒔𝒕 𝑦 and 𝒔𝒕(𝑐 ≠ 𝑦) are as follows:

 CoA-loss induces larger gradient updates for the confusing classes.
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• As 𝑤 → ∞, the largest gradient update occurs 
when ො𝑝𝒕 𝑦 = 0.5

• As 𝑤 → ∞, the largest gradient update occurs 
when ො𝑝𝒕 𝑐 = ො𝑝𝒕(𝑦)Fig 5. Gradient component of ℒprompt with respect to (a) 𝒔𝒕(𝑦)and (b) 𝒔𝒕(𝑐 ≠ 𝑦), where 

𝑤 = 0 represents standard cross-entropy.
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⚫Confidence-Aware Weights for Generalization without Trade-Offs

■ Assumption 3.4. The specialized prediction Ƹ𝑝𝒕𝒊 for 𝒟𝑇𝑖 satisfies the following relationships:

1. A prediction Ƹ𝑝𝒕𝑖 optimized for a specific domain 𝒟𝑇𝑖 always performs better than predictions Ƹ𝑝𝒕𝑗≠𝑖
made by prompts optimized for other domains 

2. The generalized prediction Ƹ𝑝𝒕0 is more effective for unseen classes.
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Statistic experiment using the CIFAR-100 and the pre-trained CLIP model:
• 100 classes are randomly splited into 50 in-class and 50 out-class domains.
• The prediction with prompt trained on the in-class subset is compared 

with the zero-shot on both domains.
• p-value were 𝑝in = 9.25 × 10−12 and 𝑝out = 2.06 × 10−10

➔ Inequalities in Assumption 3.4 hold with strong statistical significance.
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Appendix B

⚫Confidence-Aware Weights for Generalization without Trade-Offs

■ Assumption 3.4. The specialized prediction Ƹ𝑝𝒕𝒊 for 𝒟𝑇𝑖 satisfies the following relationships:

■ Optimizing 𝜋𝑖
in for in-class domains

 If the specialized prediction Ƹ𝑝𝒕𝒊 outperforms the generalized prediction Ƹ𝑝𝒕𝒋≠𝒊➔ 𝜋𝑖
in increases

Otherwise ➔ 𝜋𝑖
in decreases

 Further details on the cross-entropy effect in the mixture model are provided in Appendix B.
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⚫Confidence-Aware Weights for Generalization without Trade-Offs

■ Assumption 3.4. The specialized prediction Ƹ𝑝𝒕𝒊 for 𝒟𝑇𝑖 satisfies the following relationships:

■ Optimizing 𝜋𝑖
out for out-class domains

where 𝑑 is a margin and 𝐻( Ƹ𝑝) is the normalized entropy of Ƹ𝑝 over the out-class set, i.e. 𝐻 Ƹ𝑝 =
σ
𝑐∼𝒴𝑖

out− Ƹ𝑝 𝑐 log Ƹ𝑝 𝑐 / log 𝒴𝑖
out .

 It makes specialized predictions less confident than generalized ones.
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High entropy 
➔ Uncertain prediction

Low entropy 
➔ Confident prediction
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⚫Experiments: Base-to-New Generalization
Is CoCoA-Mix effective at balancing specialization on base classes and generalization to new 

classes?

■ Each dataset is evenly split into two disjoint subsets: Base for tuning and unseen New
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Tab 1. Performance comparison on 11 datasets in the base-to-new benchmark. H represents the harmonic mean. 
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⚫Experiments: Cross-Dataset Transfer
Is CoCoA-Mix capable of transferring learned knowledge effectively across different datasets?

■ The prompt is trained on ImageNet with 1,000 classes and tested on 10 different datasets with 
non-overlapping classes

■ Detailed results are provided in Appendix C.
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Tab 2. Performance comparison in cross-dataset transfer.
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⚫Experiments: Few-Shot Class-Incremental Learning (FSCIL)
Is CoCoA-Mix effective in mitigating forgetting and adapting to new tasks in few-shot class-

incremental learning?

■ The number of prompts 𝐾 + 1 was increased incrementally, with each prompt 𝒕𝑖 specializing 
in its session.
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Tab 3. Performance comparison on CIFAR100 in the FSCIL benchmark. Mean represents the average accuracy across all sessions, and PD indicates the 
performance difference between the first and last sessions.
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⚫Experiments: Ablation Studies
Does CoA-loss improve specialization of prompt tuning?

Is CoA-loss truly effective in handling confusing samples?
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Fig 8. Performance improvement on confusing samples

Fig 6. Performance comparison across various loss functions

Fig 7. (a) Proportion of predictions by zero-shot CLIP on EuroSAT. (b) Accuracy on easy test 
samples correctly predicted by zero-shot CLIP. (c) Accuracy on confusing test samples 
misclassified by zero-shot CLIP with a probability gap below 0.2. (d) Accuracy on all test samples.
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⚫Experiments: Ablation Studies
Does CoA-weights improve generalization of prompt tuning?

Are CoA-weights sensitive to the way the out-class set is generated?
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Tab 5. Ablation study comparing different strategies for generating unseen classes. The table reports accuracy on New 
classes.

Tab 4. Effect of CoA-weights on Base and New classes.
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Thanks for your kind attention
ds.hong@kaist.ac.kr

@



Appendix A

⚫Proof of Theorem 3.2
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Appendix B

⚫Effect of Cross-Entropy in the Mixture Model

19

Go Back to Main



Appendix C

⚫Cross-Dataset Transfer
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