Learning Fused State Representations for Control from Multi-View Observations Zeyu Wang* 1 Yao-Hui Li* 1 , Xin Li † 1 , Hongyu Zang 2 , Romain Laroche 3 , Riashat Islam 4 ¹Beijing Institute of Technology, Beijing, China ²Meituan, Beijing, China ³Wavve. London. UK ⁴Mila - Quebec Al Institute, Montreal, Canada July 2025 ^{*} Equal contribution [†] Corresponding author ## Background Key challenges of multi-view reinforcement learning: learning expressive and robust state representations - the difficulty in learning and fusing compact representation from redundant and high-dimensional multi-view observations - the problem of dealing with missing or interfering views in real-world scenarios #### MFSC: Multi-view Fusion State for Control ## Experimental Results Evaluation on Meta-World • Evaluation on PyBullet's Ant. • Robustness Against Missing Views • Robustness Against Noisy Views Abalation Study #### Interpretability Visualization • Visualization of multi-view fusion for task-relevant representations. #### Interpretability Visualization • Visualization of learned representation on noisy view • Quantitative Analysis on Bisimulation Metric # Check our paper for . . . - Detailed description of our method - Theoretical guarantees - More empirical results (a) paper (b) project