Learning Fused State Representations for Control from Multi-View Observations

Zeyu Wang* 1 Yao-Hui Li* 1 , Xin Li † 1 , Hongyu Zang 2 , Romain Laroche 3 , Riashat Islam 4

¹Beijing Institute of Technology, Beijing, China

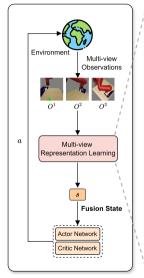
²Meituan, Beijing, China

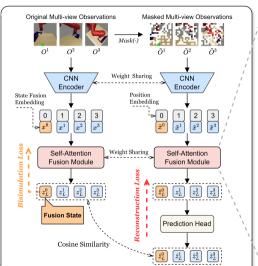
³Wavve. London. UK

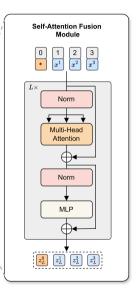
⁴Mila - Quebec Al Institute, Montreal, Canada

July 2025

^{*} Equal contribution

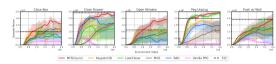

[†] Corresponding author

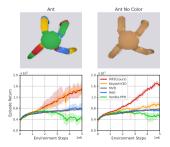

Background


Key challenges of multi-view reinforcement learning: learning expressive and robust state representations

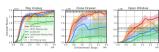
- the difficulty in learning and fusing compact representation from redundant and high-dimensional multi-view observations
- the problem of dealing with missing or interfering views in real-world scenarios

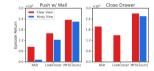
MFSC: Multi-view Fusion State for Control

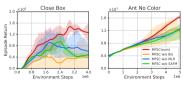




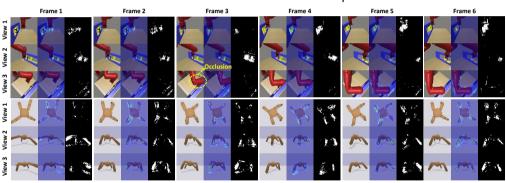
Experimental Results


Evaluation on Meta-World

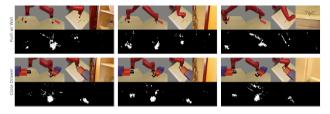

• Evaluation on PyBullet's Ant.


• Robustness Against Missing Views

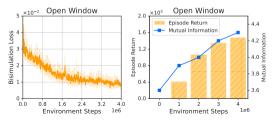
• Robustness Against Noisy Views



Abalation Study


Interpretability Visualization

• Visualization of multi-view fusion for task-relevant representations.



Interpretability Visualization

• Visualization of learned representation on noisy view

• Quantitative Analysis on Bisimulation Metric

Check our paper for . . .

- Detailed description of our method
- Theoretical guarantees
- More empirical results

(a) paper

(b) project