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Background

» Self-supervised contrastive learning has emerged as a powerful
tool to learn meaningful representations from unlabeled data.

* However, in the existing theoretical research, the role of data
augmentation is still under-exploited.

* The effects of specific augmentation types such as random
cropping and random color distortion are unexplained.

Our Contributions

* We for the first time propose an augmentation-aware error
bound for self-supervised contrastive learning, which explicitly
includes the quality of data augmentation in the bound without
any additional assumptions.

* By proposing a novel semantic label assumption, we analyze
specific types of data augmentation including random resized
crop and color distortion.

* We conduct experiments to verify our theoretical conclusions.

Mathematical Formulations

Unsupervised risk.
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Downstream supervised classification. For evaluation, given the
learned representation f : X — R% we train a linear classifier g =
Wf : R% - R on top of f with W € R¢*4, Specifically, we use the
mean classifier where W := [y, ...,1c]", pe = Ez~p f (X), ¢ € [C]
with cross entropy loss function L3YP (X, c; f).
Supervised risk.

RSP (f) == EcangBgp L3P (X, C; f).

Main Theorem

Notations. X € X: original input image (with bar notation).

x = a(x): augmented image (without bar notation).

a € A:random data augmentation.

C € N: the number of classes; [C] = {1, ...,C}.

c € [C] ~ m,: the class label of X;

me =Py =c); = {m}e=1; pc = P( |y = 0).

Data generation process of unsupervised contrastive learning.
(i) draw positive/negative classes: ¢, {ci}X_, ~ mK*1;

(i) draw an original sample for the anchor and positives X ~ p,;
(iii) draw original samples for the negatives Xx;, ~ Pey k=1,.. K;
(iv) draw data augmentations a,a’, {a,}X_; ~ AKX+,

Then we have: anchor x = a(x), positive sample x" = a'(x), and
negative samples x;, = a,(x), k=1, ..., K.

InfoNCE loss function.
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Theorem 1 (Augmentation-Aware Error Bound).

RSP < [R““ — T E log(Col + 1)]
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» The bound is composed of the unsupervised contrastive risk,
CURL's class collision term, and two distance terms.

» The first distance term represents the minimum distance
between two augmented same-class (different) images. It
measures how well the same-class images are connected.

» The second distance term represents the maximum distance
between the two augmentations of the same images. It could be
understood as the range or variance of data augmentation.

» The result holds without any further assumptions, especially
without the conditional independence assumption of CURL.

» Under a mild centered representation assumption (]Eaf(a(f))=
f (%)), the coefficient 5 can be improved to 1.

» Under the Lipschitz continuous assumption, the distance terms
can be on the pixel-level with coefficients c; (Lipschitz constant).

Impacts of Data Augmentations

Semantic Label Assumption. An image can have several semantic
areas with their corresponding semantic labels, i.e., each pixel §; ,

has a semantic label s related to image class y.

Fig. Semantic labels. (a) An
automobile image has semantic
labels windshield, headlights,
and wheels; (b) a truck image
has semantic labels ,

, and wheels.

(b) Tru”ck.

If a(x) contains only same-semantic label pixels (semantic label s),

(a) Automobile.
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If a(x) has more than one semantic labels, E; min|[a(x) — a’(x") ||
NPT
=20+ [ 1[5(86) # smax) (k© — 12, ]
jL€ld],i€[3]
» With larger crop size, the cropping area intersects more often
with the semantic boundary, i.e., larger MinSameClassDist.

» Smaller crop size gives a larger variance, i.e., MaxSamelmageDist.
» A trade-off between the distances w.r.t. augmentation strength.

Experimental verification

* We verify the distance trade-offs on Tinylmagenet.
* The optimal distance sums corresponds to best accuracy.

MaxSamelmageDist MinSameClassDist
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