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The Challenge of Physics-Informed Machine Learn-
ing

e Standard Approach (PINNs): A neural network ug is trained
to approximate a PDE solution by penalizing the PDE residual
and boundary /initial conditions in a loss function.

L(0) = Lepr + Lac + Lic

The Problem: This "soft constraint” method creates a highly
challenging optimization problem. The differential operators in
the loss lead to ill-conditioned Hessians and extremely slow con-
vergence for standard optimizers.

Our Motivation: Simplify the optimization landscape by de-
signing a neural network architecture that satisfies key physical
laws by construction.

Unifying Conservation Laws with DFST's

Many Auid dynamics systems are governed by conservation of mass and
momentum.

Orp + VYV - (pu) =0
I(pu) +V - (pu®u+ o) =0

These can be unified into a single mathematical object on a
Divergence-Free Symmetric Tensor (DFST), S:

Din,x (S) — 0

where S is the flux tensor:
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The Riemann Tensor Neural Network (RTNN) Ar-
chitecture

An RTNN constructs a DFST in three steps:

1. Learn Coeflicients: An MLP, NNy, maps input coordinates x
to a set of scalar coeflicients {c;;(x;0)}.

. Compute Hessians: Use automatic diflerentiation to compute
the Hessian components of these coefficients, 808dcij.

. Construct the Tensor: The final output is formed by contract-
ing the Hessians with a fixed basis of constant tensors {77}
that satisty the required symmetries:

So(x)ap = > Tob2)0°9%;;(x;0)

1<i<j<m

This construction guarantees the output Sy is always a symmetric,
divergence-free tensor.

RTINN leads to Physically consistent solutions

Reference Solution Error (RTNN) Error (NCL)
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Architectural Question

How can we design a neural network that outputs a tensor
Sy that i1s guaranteed by construction to be
divergence-ifree and symmetric?

V°S¢9:O and S@ZS;_

Main Result 1: Representation Theorem for DFST's

Any sufficiently smooth DFST, S,,, can be expressed as the double
covariant derivative of a (0,4)-tensor potential, K,.pq, which satisfies
the following symmetries:

1. Antisymmetry within index pairs:

K(ab)cd =0
Kab(cd) =0

2. Symmmetry between pairs:

Kabcd — chab

The resulting DFST' is given by:

Sab — vCvd}—(a,cbd

Main Result 11I: Universal Approximation

Our RTNN architecture is expressive enough to represent any physical
system that can be described by a sufficiently smooth DFEFST. For any
such tensor S, and for any € > 0, there exists an RIT'NN Sy such that:

sup ||S(x) — So(x)||rro < €
xec

Decomposition Theorem for the Potential Tensor K

Any tensor K with the required Riemann-like symmetries is isomorphic
to a symmetric bilinear form on the space of 2-forms (Sym?(A2V*)).
This allows us to construct a basis {T(%7)} for the potential tensors
from a basis of 2-forms {wy }:

TUI) = (e A ef)wi(e Aeh) + wj(els Aefwi(er Aeh)

The potential tensor K can then be decomposed onto this fixed basis
using a set of learnable scalar functions {c;;(z)}:

Kava(@) = Y ey(@)Tl))

1<i<j<m
The network’s task is to learn these scalar coefficients. The number of
functions to learn, m(”;rl), depends only on the number of spacetime
n(n—1)

dimensions, n, where m = —=

RTNN Training Paradigm Loss Formulation

The RTNN outputs a single flux tensor Sy. The physical fields are
explicitly extracted from its components. Since mass and momentum
conservation are satisfied by construction, the loss function only penal-
izes the remaining physics.

1. Field Extraction:

me X My
Po

M

PO = (39)007 me = (59)1%,07 09 — (59)1%,1:7’2,

(Note: Maxwell stress My = 0 for pure fluid dynamics cases)

2. Loss Penalties:
Problem Primary Loss Penalty Term
Euler (Inviscid) Enforce zero shear stress:
Lo =|log — Ztr(op)I||?
Navier-Stokes Enforce the viscous constitutive law:
Lo = |[(op = tr(0p)T) — v(Vug + (Vug)™)||?
MHD Enforce viscous law and magnetic induction:

Ltotal — /:fa + H7zinduction||2

RTINN improves training convergence and final accu-
racy

Rel. L2 Error
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Quantitative Results: RTNN vs. Baselines

Error Magnitude

Experiment RTNN Error Baseline Error Method

Euler Vortex 9.9e-05 3.8e-02 PINN
NS Cylinder 5.7e-03 2.5e-02 NCL
NS Airfoil 1.4e-02 1.5e-01 NCL
NS Beltrami 4.3e-04 1.4e-03 PINN
MHD (Velocity) 2.3e-02 1.6e-01 CurlSPINN
MHD (B-Field) 1.0e-01 1.5e-01 CurlSPINN
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