

Riemann Tensor Neural Networks: Learning Conservative Systems with Physics-Constrained Networks

Anas Jnini™ Lorenzo Breschi Flavio Vella

University of Trento, Italy

☑ Correspondence to: anas.jnini@unitn.it

The Challenge of Physics-Informed Machine Learning

• Standard Approach (PINNs): A neural network u_{θ} is trained to approximate a PDE solution by penalizing the PDE residual and boundary/initial conditions in a loss function.

$$\mathcal{L}(\theta) = \mathcal{L}_{\mathrm{PDE}} + \mathcal{L}_{\mathrm{BC}} + \mathcal{L}_{\mathrm{IC}}$$

- The Problem: This "soft constraint" method creates a highly challenging optimization problem. The differential operators in the loss lead to ill-conditioned Hessians and extremely slow convergence for standard optimizers.
- Our Motivation: Simplify the optimization landscape by designing a neural network architecture that satisfies key physical laws by construction.

Unifying Conservation Laws with DFSTs

Many fluid dynamics systems are governed by conservation of mass and momentum.

$$\partial_t \rho + \tilde{\nabla} \cdot (\rho \mathbf{u}) = 0$$
$$\partial_t (\rho \mathbf{u}) + \tilde{\nabla} \cdot (\rho \mathbf{u} \otimes \mathbf{u} + \sigma) = 0$$

These can be unified into a single mathematical object on a **Divergence-Free Symmetric Tensor (DFST)**, S:

$$\operatorname{Div}_{t,x}(S) = 0$$

where S is the flux tensor:

$$S = \begin{pmatrix} \rho & m^{\top} \\ m & \frac{m \otimes m}{\rho} + \sigma \end{pmatrix}$$

The Riemann Tensor Neural Network (RTNN) Architecture

An RTNN constructs a DFST in three steps:

- 1. Learn Coefficients: An MLP, NN_{θ} , maps input coordinates x to a set of scalar coefficients $\{c_{ij}(x;\theta)\}$.
- 2. Compute Hessians: Use automatic differentiation to compute the Hessian components of these coefficients, $\partial^c \partial^d c_{ij}$.
- 3. Construct the Tensor: The final output is formed by contracting the Hessians with a fixed basis of constant tensors $\{T^{(i,j)}\}$ that satisfy the required symmetries:

$$S_{\theta}(x)_{ab} = \sum_{1 \le i \le j \le m} T_{acbd}^{(i,j)} \partial^c \partial^d c_{ij}(x;\theta)$$

This construction guarantees the output S_{θ} is always a symmetric, divergence-free tensor.

RTNN leads to Physically consistent solutions

Architectural Question

How can we design a neural network that outputs a tensor S_{θ} that is **guaranteed by construction** to be divergence-free and symmetric?

$$\nabla \cdot S_{\theta} = 0$$
 and $S_{\theta} = S_{\theta}^{\top}$

Main Result I: Representation Theorem for DFSTs

Any sufficiently smooth DFST, S_{ab} , can be expressed as the double covariant derivative of a (0,4)-tensor potential, K_{acbd} , which satisfies the following symmetries:

1. Antisymmetry within index pairs:

$$K_{(ab)cd} = 0$$
$$K_{ab(cd)} = 0$$

2. Symmetry between pairs:

$$K_{abcd} = K_{cdab}$$

The resulting DFST is given by:

$$S_{ab} = \nabla^c \nabla^d K_{acbd}$$

Main Result II: Universal Approximation

Our RTNN architecture is expressive enough to represent any physical system that can be described by a sufficiently smooth DFST. For any such tensor S, and for any $\epsilon > 0$, there exists an RTNN S_{θ} such that:

$$\sup_{x \in \Omega} ||S(x) - S_{\theta}(x)||_{Fro} < \varepsilon$$

Decomposition Theorem for the Potential Tensor K

Any tensor K with the required Riemann-like symmetries is isomorphic to a symmetric bilinear form on the space of 2-forms $(\operatorname{Sym}^2(\Lambda^2V^*))$. This allows us to construct a basis $\{T^{(i,j)}\}$ for the potential tensors from a basis of 2-forms $\{\omega_k\}$:

$$T_{abcd}^{(i,j)} = \omega_i(e_a^* \wedge e_b^*)\omega_j(e_c^* \wedge e_d^*) + \omega_j(e_a^* \wedge e_b^*)\omega_i(e_c^* \wedge e_d^*)$$

The potential tensor K can then be decomposed onto this fixed basis using a set of learnable scalar functions $\{c_{ij}(x)\}$:

$$K_{acbd}(x) = \sum_{1 \le i \le j \le m} c_{ij}(x) T_{acbd}^{(i,j)}$$

The network's task is to learn these scalar coefficients. The number of functions to learn, $\frac{m(m+1)}{2}$, depends only on the number of spacetime dimensions, n, where $m = \frac{n(n-1)}{2}$

RTNN Training Paradigm Loss Formulation

The RTNN outputs a single flux tensor S_{θ} . The physical fields are explicitly extracted from its components. Since mass and momentum conservation are satisfied by construction, the loss function only penalizes the remaining physics.

1. Field Extraction:

 \mathbf{MHD}

$$\rho_{\theta} = (S_{\theta})_{00}, \quad m_{\theta} = (S_{\theta})_{1:n,0}, \quad \sigma_{\theta} = (S_{\theta})_{1:n,1:n} - \frac{m_{\theta} \otimes m_{\theta}}{\rho_{\theta}} - \mathcal{M}_{\theta}$$

(Note: Maxwell stress $\mathcal{M}_{\theta} = 0$ for pure fluid dynamics cases)

Problem 2. Loss Penalties:
Primary Loss Penalty Term
Euler (Inviscid) Enforce zero shear stress:

 $\mathcal{L}_{\sigma} = \|\sigma_{\theta} - \frac{1}{n} \operatorname{tr}(\sigma_{\theta}) \mathbf{I}\|^2$ Navier-Stokes Enforce the viscous constitutive law:

 $\mathcal{L}_{\sigma} = \|(\sigma_{\theta} - \frac{1}{n} \operatorname{tr}(\sigma_{\theta}) \mathbf{I}) - \nu (\nabla \mathbf{u}_{\theta} + (\nabla \mathbf{u}_{\theta})^{T})\|^{2}$ Enforce viscous law and magnetic induction:

 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\sigma} + \|\mathcal{R}_{\text{induction}}\|^2$

RTNN improves training convergence and final accuracy

Quantitative Results: RTNN vs. Baselines

Experiment	RTNN Error	Baseline Error	Method	Gain
Euler Vortex	9.9e-05	3.8e-02	PINN	385x
NS Cylinder	5.7e-03	2.5e-02	NCL	4.5x
NS Airfoil	$1.4\mathrm{e}\text{-}02$	1.5e-01	NCL	10.6x
NS Beltrami	4.3e-04	1.4e-03	PINN	3.3x
MHD (Velocity)	2.3e-02	1.6e-01	CurlSPINN	6.9x
MHD (B-Field)	1.0e-01	1.5e-01	CurlSPINN	1.5x