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1 Background and Motivation

Problem Formulation of Federated Learning (FL)

• Federated Learning:

➢ Multiple clients collaboratively train a machine 

learning model with the help of a central server.

➢ Each client performs multiple local update 

based on its local private data

➢ Server aggregates the global model 

Advantages:

• Ensures privacy by avoiding raw data sharing

• Offers scalability and communication efficiency • Figure from https://encyclopedia.pub/entry/48625



• Data Heterogeneity in FL: 

2 Problem-Parameter-Free Federated Learning

“Client drift”: Local updates from individual clients diverge 

significantly from one another and from the global objective

Bounded Gradient Dissimilarity

• Figure from https://ar5iv.labs.arxiv.org/html/2103.00710

Challenge 1: Data Heterogeneity

• Quantifying this bound is difficult in FL due to privacy and data constraints.
• Limit the applicability of FL dynamic environments with varying data distributions.



1 Federated Learning

➢ Global model aggregation at server:

➢ 𝐾 steps local update at client 𝑖:

Stepsize setting is crucial

Background and Motivation

FedAvg Key Steps:

• Federated Learning:

Challenge 2: Problem-Specific Hyperparameter Tuning



• Problem-Specific Constants:
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Challenge 2: Problem-Specific Hyperparameter Tuning

• Federated Learning:

➢ 𝐿: Smoothness constant

➢ 𝜎2: Stochastic gradient variance

➢ 𝐵, 𝜎ℎ
2: coefficients on gradient 

dissimilarity bound

➢ ∆≔ 𝑓 𝜽0 − 𝑓∗: Initial suboptimality gap

Assumptions

L-Smoothness

Stochastic Gradient Variance 

Bounded Gradient Dissimilarity
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• Federated Learning:
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➢ 𝜎2: Stochastic gradient variance

➢ 𝐿, 𝜎ℎ
2: coefficients on gradient 

dissimilarity bound

➢ ∆≔ 𝑓 𝜽0 − 𝑓∗: Initial suboptimality gap

Assumptions

L-Smoothness

Stochastic Gradient Variance 

Bounded Gradient Dissimilarity

• Estimating those constants in FL is difficult due to data privacy 
restrictions and computational complexity.

• Problem-specific tuning limits the applicability of those FL approaches
     in dynamic environments (e.g., IoT, edge devices).

Challenge 1: Problem-Specific Hyperparameter Tuning

Background and Motivation
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Our Method: Tuning-Free Asynchornous Federated Learning (AFL)

• Federated Learning: Assumptions

L-Smoothness

Stochastic Gradient Variance 

Bounded Gradient Dissimilarity

Background and Motivation

Independent of all problem-specific 
parameters, enabling tuning-free

Eliminating the requirement on data 
heterogeneity bounds
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Handling data heterogeneity: Momentum + Control variates

2 Problem-Parameter-Free Federated Learning

• Local update at client 𝑖:

Momentum: Accumulating past gradients across iterations and clients

• Global aggregation at server:

Momentum-driven Asynchronous Federated Learning (MasFL)



2 Momentum-driven Asynchronous Federated Learning (MasFL)



Key Techniques: Normalized Gradient Descent
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• Traditional gradient descent: 

• The stepsize constraint is:

• Normalized gradient descent: 

The step size 𝜼 must be small enough to 

account for the gradient's magnitude, 

which is governed by 𝑳. Large gradients 

can lead to overshooting and instability.

The gradient is normalized, so the step 

size 𝜂 no longer depends on how large the 

gradient is (irrespective of 𝐿). Consistent 

step sizes allows NGD to navigate flat 

regions, steep regions, and saddle points 

more effectively.

Steep region           NGD scales down the update step           prevents overshooting

  Flat region               NGD amplifies the update step                  avoids stagnation

Adaptive Momentum-driven Asynchronous Federated Learning (MasFL)



2 Adaptive Momentum-driven Asynchronous Federated Learning (AdaMasFL)



Convergence of MasFL

3 Theoretical Results

Assumptions

L-Smoothness Stochastic Gradient Variance 



Convergence of AdaMasFL

3 Theoretical Results

Tuning-Free AFL 

All hyperparameters (𝜼: local learning rate,𝜸: global learning rate, and 𝜷: momentum parameter) in 
Algorithm AdaMasFL are explicated determined by system-predefined constants: S (the number of 
participation clients), K (local update times), T (iteration times)



3 Comparisons with Prior Work
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3 Comparisons with Prior Work

Figure 1. Test accuracy versus the number of communication rounds on the FMNIST dataset (CNN, Dir(0.5)).

The stepsizes of AdaMasFL are set directly based on the guidance of Theorem 2. The stepsize of all baselines are 
perfectly tuned by grid search. 

Our approach achieves start-of-the-art performance while 
eliminating the tedious process of stepsize tuning

(a) i.i.d. (b) non-i.i.d.



3 Comparisons with Prior Work

Figure 2. Test accuracy on the non-i.i.d. FMNIST dataset under varying levels of asynchrony

AdaMasFL demonstrates ex-ceptional robustness to varying levels of asynchrony, 
main-taining nearly consistent performance despite increasing delays

• Mc denotes the number of clientsperforming local updates concurrently. a larger Mc enables more frequent global 
aggregations, resulting in greater asynchronous delays.

• In Figure 2, we fix the learning rate settings of all algorithmsto those used in Figure 1 and evaluate their performance 
as Mc increases. 



Thanks!
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