Peri-LN: Revisiting Normalization Layer in the Transformer Architecture
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In this study, we :

1.

Present an in-depth analysis of Post-LN and Pre-LN in large-scale Transformers, examining how variance and
gradient properties evolve beyond initialization.

Investigate Peri-LN to understand how normalizing both the inputs and outputs of each module moderates
hidden-state behavior during forward and backward propagation, providing a systematic perspective on this
underexplored alternative.

Provide quantitative evidence on how large activation influences training stability, benchmark performance, and

model behaviors.



Motivation

e Massive activations remain poorly understood. Persistent high-magnitude activations in Pre-LN can act as residual
biases that distort attention and limit generalization; their root causes and long-term effects are unclear.

° Signal-propagation analyses link exploding/vanishing gradients to LN
placement, depth, and residual pathways, but empirical validation at scale is limited.

° Underexplored alternative: Peri-LN. While Post- and Pre-LN dominate practice, why Gemma2 & 3, and Olmo2 use
different architecture?

e Goal of this study. Provide a rigorous, large-scale empirical and theoretical comparison of Post-, Pre-, and Peri-LN to

clarify when each placement best balances training stability, computational cost, and downstream performance.



Transformer Architecture Through the Placement of Layer Normalization
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Figure 1. Illustration of hidden-state variance across different
model depths and training iterations. From the initialization stage
up to the point where 6.3 billion tokens were trained, we observed
the variance growth of hidden states for Pre-LN and Post-LN ar-
chitectures. The analysis was conducted using a 1.5B-parameter

Var (517 I+ 1) ~ Var(a: l) + ,30, (4) model, and consistent trends were observed across models of dif-
ferent sizes. Detailed settings and more results are in Section 4.4.2.

Figure 2. Placement of normalization in Transformer sub-layer.



Transformer Architecture Through the Placement of Layer Normalization

1. (Optional) Initial Embedding Normalization:

(9(_ Yo = Norm(z,),

u A B C
o PostLN x x 2. Input- & Output-Normalization per Layer:
Attention or MLP
Module \ Pre-LN v X X
Peri-LN v v X y1 = x; + Norm (Module (Norm(a:l))) , 3
P,

3. Final Embedding Normalization:

Figure 2. Placement of normalization in Transformer sub-layer. yr = Norm(zp),



Growth of Hidden State
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Figure 5. This figure shows the forward growth patterns of hidden states for different architectures, highlighting the structural impact of
normalization placement. Each model contains 1.5 billion parameters (excluding the embedding size). We confirmed that the observed
trend remains consistent across all model sizes.



Transformer Architecture Through the Placement of Layer Normalization

Proposition 3.1 (Informal). Let L(-) be the loss function, and let W' denote the weight of the last layer of MLP(-). 7
Let y be the scaling parameter in Norm(-), and let D bdimedimension. Then, the gradient norm for each normalization strategy behaves as follows.

(1) Pre-LN (exploding gradient). Consider the following
sequence of operations:

Z = Norm(z),a = MLP(%Z),0 =z + a, 3)

then

0L(0)
)

oW

where h := ReLU (:Z‘W(l) + b(l)). In this case, when

a massive activation ||h|| occurs, an exploding gradient

10L£/0W @)|| can arise, leading to training instability.

(2) Peri-LN (self-regularizing gradient). Consider the fol-
lowing sequence of operations:

Z = Norm(z),a = MLP(Z),a = Norm(a),0 = = + a,
5)
then
9L(0)
6Wi(,§')

where h := ReLU (iW(l) + b(l)). In this case, even when
a massive activation ||h|| occurs, Norm(-) introduces a
damping factor ||a||, which ensures that the gradient norm

|0L£/0W @)|| remains bounded.
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Early Stage Instability in Pre-Training

4.5 T 3 5.0
Peri-LN —— Peri-LN . ! —— Peri-LN
a ---- Pre-LN | @5 ---- Pre-LN ~ £ || ---- Pre-LN w45
= g E 24.0
£35 £4 S S
s © gl ©35
o 4 =
= = ' 5 ]
3.0 3 "“‘“"u“‘ﬂh;uAM& : 3.0
0 1 2 3 0 1 2 3 0 0 1 2 3 0.00 0.25 0.50 0.75 1.00

Tokens 1lel0 Tokens 1lel0 Tokens lel0

(a) Divergence at seed 2 (b) Loss spike at seed 3 (c) Gradient spikes at seed 5 (d) Loss spikes at seed 5

Figure 4. Common case of early stage instability in pre-training. In most of our experiments across different random seeds, the Pre-LN
architecture exhibited early-stage instability. Although we initially suspected that a high learning rate might be the root cause, lowering it
did not substantially mitigate these issues. By contrast, under the same settings, Peri-LN displayed stable training curves.
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We posit that the instability of Pre-LN arises from three factors:
1.  the hidden state variance exhibits a sudden surge from initialization through the early stages of
optimization, deviating from the linear trend predicted by Eq.(4) Var(z41) ~ Var(z;) + Bo, @
2. the exponential growth of hidden state variance across both depth and training steps

3. the instability caused by the massive activations (Proposition 3.1).



Evaluations of Post-LN, Pre-LN, and Peri-LN Transformers

Table 2. Average benchmark scores (with standard deviations) across 5 different training seeds for Post-, Pre-, and Peri-Layer Normal-
ization language models. Each model size excludes the embedding parameters. Loss denotes the evaluation loss on random samples of
the C4 dataset (Raffel et al., 2020). Arch. denotes architecture, and Avg. denotes the averaged benchmark score across tasks. SFT avg.
denotes the averaged benchmark score across tasks of instruction fine-tuned models. When calculating the evaluation score, diverged

checkpoints were excluded.

Size Arch. ARC-Easy HellaSwag PIQA SIQA Winogrande Avg. 1 Loss] SFT Avg. 1
Post-LN  35.70 £1.09 28.91 +0.16 62.26 +0.73 34.48 +1.04 50.88 +£0.75  42.45 7.46 46.44
400M  Pre-LN 54.87 +1.63 34.17 +1.66 68.79 +1.34 39.73 +£0.59 50.88 +£2.35  49.69 3.43 49.96
Peri-LN 57.51 +0.81 37.46 +0.34 69.48 +0.39 40.64 +0.51 52.74 +0.67 51.57 3.34 51.96
Post-LN  42.92 +0.93 31.69 +0.41 66.72 +0.40 35.84 +0.61 50.30 +£1.87 45.49 5.38 48.95
1.5B Pre-LN 61.51 +£1.22 39.88 +1.53 71.41 +0.88 41.23 +0.97 54.51 +2.07 53.71 3.29 53.89
Peri-LN  66.17 +0.21 43.94 +0.34 73.63 +0.24 42.34 +0.83 56.64 +0.44 56.55 3.18 56.94
Post-LN  45.30 +£3.23 33.59 +0.44 66.45 +2.86 35.82 +1.09 51.10 +1.60 46.45 4.43 49.33
3.2B Pre-LLN 65.24 +2.32 44.23 +2.32 73.86 +1.19 42.68 +£0.07 57.42 +2.51 56.69 3.20 57.08
Peri-LN  68.73 +0.57 46.99 +0.21 74.31 +0.41 43.00 +£0.73 59.76 +0.78  58.56 3.11 59.02
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