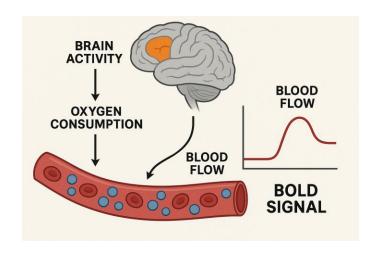


NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders

Jun-En Ding¹, Dongsheng Luo², Chenwei Wu³, Feng Liu¹

Background

 Analyzing functional brain networks through Functional magnetic resonance imaging (fMRI) is crucial for understanding mental disorders.



 BOLD signals reflect brain activity by measuring oxygen consumption-related blood flow changes that alter MRI signal intensity, indirectly indicating active brain regions.

Challenge 1- Limitations of traditional brain network analysis in fMRI

Failed to detect high-order brain network anomalies overtime

- Ignoring the dynamic FC of brain network changes over time
- Unable to decode interactions in higher-order brain activity regions

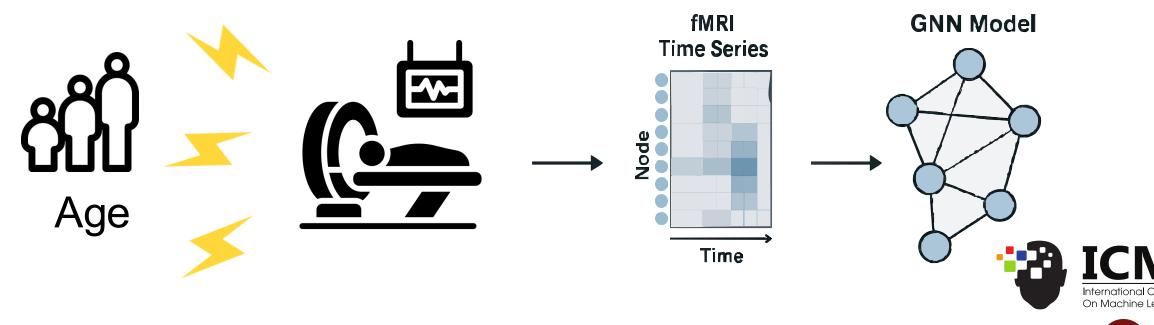
To identify disease-associated fMRI brain networks

Existing methods cannot clearly express brain connectivity interaction pathways

Challenge 2- Traditional GNN-based fMRI models ignore demographics effect

Demographics impact fMRI in mental disorder patients

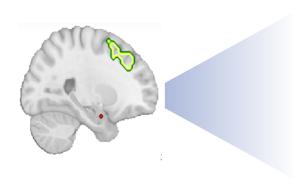
- Functional MRI signals exhibit age-dependent variations
- Demographics should be considered in GNN modeling of mental disorders cohorts

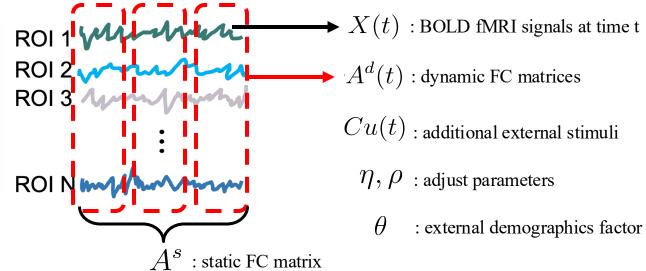


Neural Ordinary Differential Equation (Neural ODE)

Construct ODE incorporates demographics for dynamic BOLD fMRI signal modeling

$$\frac{dX(t)}{dt} = \eta A^d(t)X(t) + \rho \cdot \theta X(t) + Cu(t),$$





Neural Ordinary Differential Equation (Neuro ODE)

Discrete adjacency matrices representation

$$A^{d}(t) = \frac{1}{\eta} \left(\frac{dX(t)}{dt} \frac{1}{X(t)} - \rho \cdot \theta \right)$$

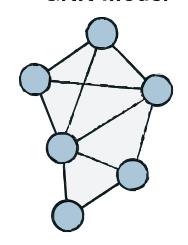
$$\stackrel{\Delta t=1}{\approx} \varphi \left(\frac{X(t+1) - X(t)}{X(t)} - \rho \cdot \theta \right)$$

where $\varphi = \frac{1}{\eta}$ is scale factors ranging from 0 to 1. Age factor

Transitional GCN

$$H^{(l)} = \sigma(D^{-\frac{1}{2}}AD^{-\frac{1}{2}}H^{(l-1)}W^{(l-1)}).$$

GNN Model



K-hop ODE-based GCN

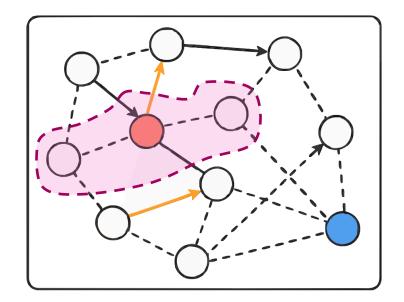
$$H^{(l+1)}(t) = \sigma\left(\sum_{k=0}^{K-1} \Phi_k(t) H^{(l)}(t) W_k^{(l)}\right)$$

$$\Phi_k(t) = \hat{D}^{-\frac{1}{2}} \hat{A}_k(t) \hat{D}^{-\frac{1}{2}}$$

$$\hat{A}_k(t) = \Gamma \odot A^s \odot [\lambda A^d(t) + (1-\lambda)(A^d(t))^T]^k$$

K-hop connectivity in brain network

$$\hat{A}_k(t) = \Gamma \odot A^s \odot [\lambda A^d(t) + (1 - \lambda)(A^d(t))^T]^k$$



$$----$$
 Static A^s —— Dynamic $A^d(t)$

----k-hop path

Method - Contrastive Masked Functional Connectivity (CMFC) Optimization

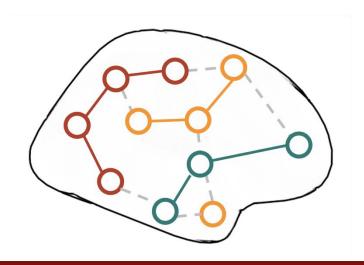
The CMFC loss can minimize similarities while maximizing dissimilarities of brain regions

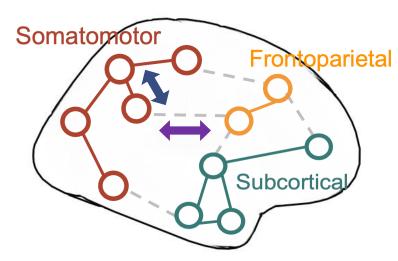
$$\mathcal{L}_{pos} = -\frac{1}{|\mathcal{A}^+|} \sum_{(i,j) \in \mathcal{A}^+} \log \left(\frac{\exp(S_{ij}(t))}{\sum_{k \in \mathcal{V}} \exp(S_{ik}(t)) + \epsilon} \right),$$

$$\mathcal{L}_{\text{neg}} = -\frac{1}{|\mathcal{A}^-|} \sum_{(i,j) \in \mathcal{A}^-} \log \left(1 - \frac{\exp(S_{ij}(t))}{\sum_{k \in \mathcal{V}} \exp(S_{ik}(t)) + \epsilon} \right).$$

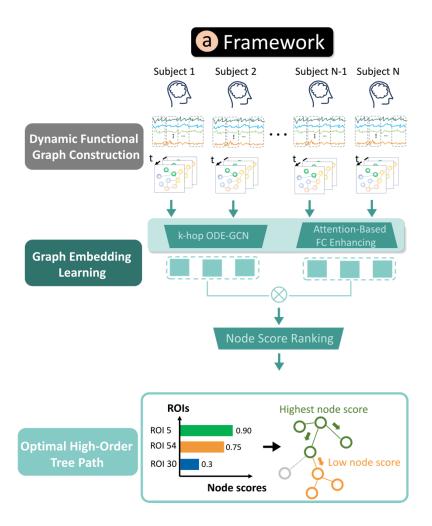
Minimize region connectivity strength ←→

Maximize region connectivity strength





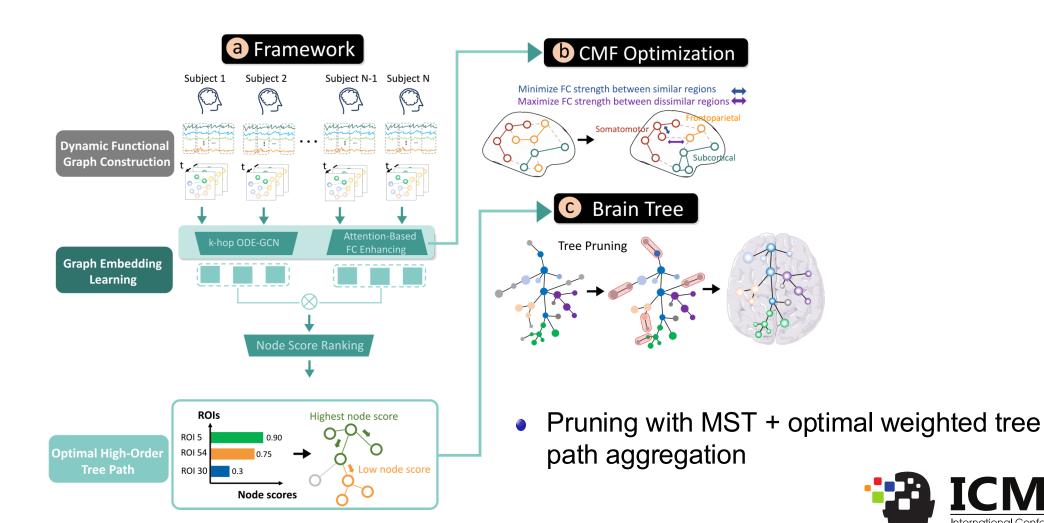
Method - Node Score Predictor



$$\mathcal{S}_i = h_i \cdot \zeta \Big(\frac{1}{|\mathcal{V}|} \sum_{j \in \mathcal{V}} Z_j(\mathbf{\Theta})^\top Z_i(\mathbf{\Theta}) \Big), \quad i \in \{1, 2, \dots, |\mathcal{V}|\}$$

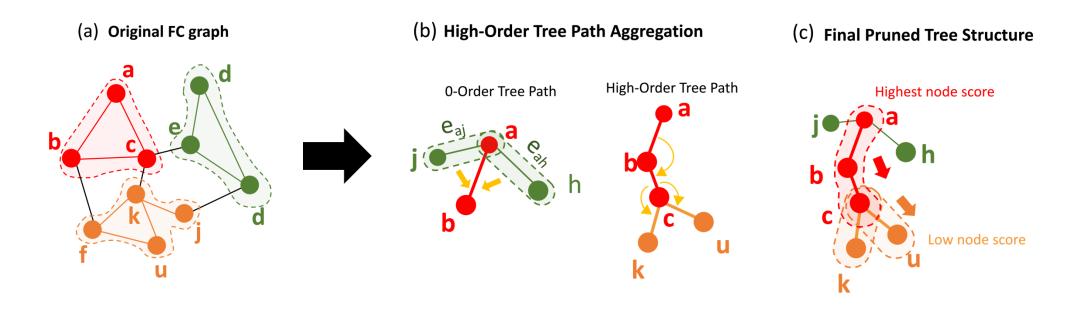
- Predicted brain regions as node score
- Reranking important node scores to assign hierarchical brain pathways

Method - Hierarchical Brain Tree Construction



On Machine Learning

Method - Hierarchical Brain Tree Construction



- Direct and indirect path information aggregation with different orders
- Aggregate important node scores and weighted edges into brain pathways

$$\mathcal{W}(P) = \alpha \sum_{v \in P} \mathcal{S}(v; \mathbf{\Theta}) + (1 - \alpha) \sum_{s=1}^{S} \sum_{(v_i, v_j) \in E(P)} \mathcal{F}_{v_i v_j}^{(s)}.$$
Node Score Contribution

High-Order FC Contribution

Brain Network Classification

Results — Mental brain disorders classification

Datasets: Cannabis (90 ROIs), COBRE (118 ROIs)

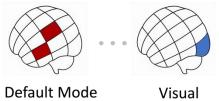
Healthy Controls Disease Cohort

Table 1. Evaluating graph classification performance with five-fold cross-validation. We computed the most competitive baseline for each method. We compared the second-best methods denoted by blue color and calculated the improvement rate, denoted as "Improv. (%)".

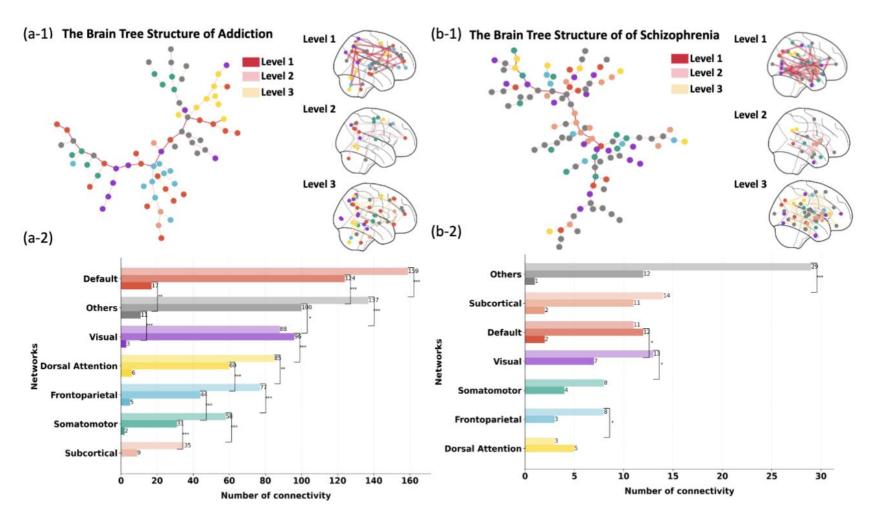
	Cannabis				COBRE			
Model	AUC	Acc.	Prec.	Rec.	AUC	Acc.	Prec.	Rec.
Pearson GCN	0.67 ± 0.06	$0.55{\pm}0.07$	0.59 ± 0.13	0.55 ± 0.06	0.54 ± 0.11	$0.55{\pm}0.10$	0.61 ± 0.12	$0.55{\pm}0.10$
k-NN GCN	0.64 ± 0.03	0.62 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.66 ± 0.07	0.62 ± 0.08	0.63 ± 0.08	$0.63{\scriptstyle\pm0.08}$
GAT (Veličković et al., 2017)	0.72 ± 0.05	0.67 ± 0.04	0.70 ± 0.06	0.67 ± 0.04	0.67 ± 0.08	0.60 ± 0.11	0.57 ± 0.21	0.60 ± 0.11
BrainGNN (Li et al., 2021)	0.67 ± 0.13	0.59 ± 0.16	$0.51 {\pm} 0.28$	0.59 ± 0.12	$0.55{\pm}0.11$	0.50 ± 0.02	0.31 ± 0.11	$0.50{\scriptstyle\pm0.02}$
BrainUSL (Zhang et al., 2023)	0.63 ± 0.11	0.65 ± 0.06	0.62 ± 0.13	0.63 ± 0.11	0.57 ± 0.10	0.54 ± 0.04	0.41 ± 0.18	$0.57{\scriptstyle\pm0.11}$
BrainGSL (Wen et al., 2023a)	$0.59{\scriptstyle\pm0.11}$	0.65 ± 0.02	0.67 ± 0.17	0.65 ± 0.02	$0.55{\pm}0.12$	0.51 ± 0.04	0.45 ± 0.11	0.51 ± 0.04
MixHop (Abu-El-Haija et al., 2019)	0.73 ± 0.05	0.69 ± 0.03	0.70 ± 0.04	0.69 ± 0.03	0.69 ± 0.05	0.61 ± 0.06	0.62 ± 0.07	0.61 ± 0.06
GPC-GCN (Li et al., 2022b)	0.53 ± 0.05	0.60 ± 0.06	0.37 ± 0.08	0.60 ± 0.06	0.50 ± 0.00	0.47 ± 0.04	0.22 ± 0.04	0.47 ± 0.04
PathNN (Michel et al., 2023)	0.70 ± 0.10	0.67 ± 0.04	0.72 ± 0.12	0.83 ±0.16	0.49 ± 0.01	0.51 ± 0.05	0.32 ± 0.27	$0.43{\pm}$ 0.46
Ours (w/o θ)	0.49 ± 0.01	0.60 ± 0.06	0.37 ± 0.08	0.60 ± 0.06	0.50 ± 0.00	0.47 ± 0.04	0.22 ± 0.01	0.47 ± 0.04
Ours (w/o \mathcal{L}_{CMFC})	0.74 ± 0.08	0.73 ± 0.05	0.73 ± 0.04	0.73 ± 0.05	0.69 ± 0.10	0.63 ± 0.10	0.64 ± 0.10	0.63 ± 0.10
NEUROTREE	0.80 ± 0.05	0.73 ±0.04	0.73 ±0.04	0.74 ± 0.04	0.71 ±0.10	0.65 ±0.08	0.66 ±0.08	0.65 ± 0.08
Improv. (%)	8.11%	-	-	1.37%	2.89%	3.17%	3.12%	3.17%

- Age-aware modeling and CMFC loss boost model robustness
- Best AUC: 0.80 (Cannabis), 0.71 (COBRE)

Hierarchical Brain Network Analysis

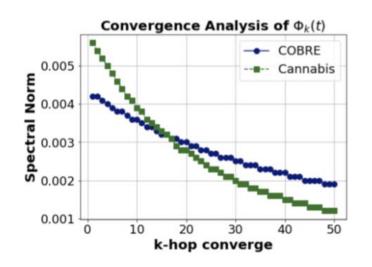


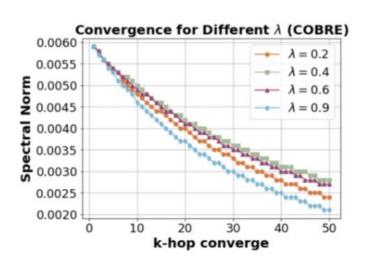
Results — Visualization of brain tree in different brain disorders

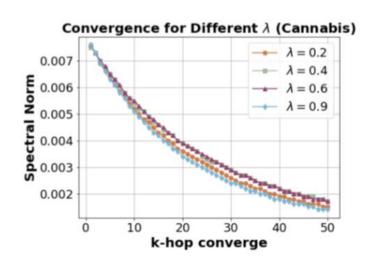


- Tree paths in addiction show DMN/VN dominance
- Schizophrenia highlights
 SUB and DMN

Results — Convergence Analysis

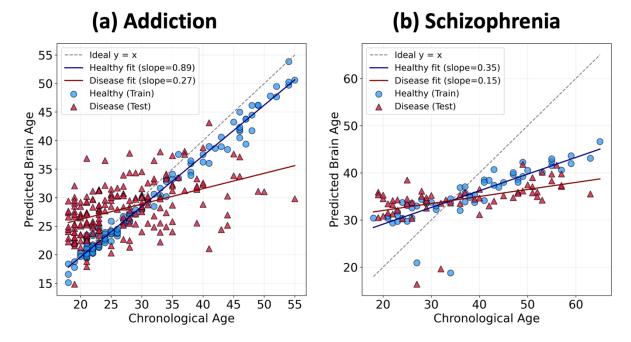






- Different mental disorders such as addiction and schizophrenia have different rates of deterioration in the brain
- Cannabis use disorder exhibits faster spectral norm convergence rates.

Results — Brain age estimation



- Comparing predicted brain age from fMRI to actual age reveals insights into mental disorder severity and progression
- Younger groups show lower prediction errors, and mental disorders accelerate brain aging

Conclusion

Graph classification

NeuroTree incorporates AGE-GCN layers to achieve SOTA graph classification

Interpretable for mental health disorders

- NeuroTree reveals disease-specific patterns (Addiction vs. Schizophrenia)
- Builds interpretable and learnable trunks and branches for hierarchical paths in tree structures

High-order brain network path learning

NeuroTree effectively integrates high-level brain region interaction pathway features

Thanks for your attention!

Al in Neuroimaging & Healthcare Lab

Paper: https://arxiv.org/abs/2502.18786

