

Interaction-Aware Gaussian Weighting for Clustered Federated Learning

Alessandro Licciardi*, Davide Leo*, Eros Fanì, Barbara Caputo, Marco Ciccone

Presenting: Alessandro Licciardi, Davide Leo

Polytechnic University of Turin (PoliTO), Italy

Correspondence to alessandro.licciardi@polito.it

Forty-Second International Conference of Machine Learning Vancouver, Canada, July 2025

Introduction

Federated Learning framework and motivation

- Federated Learning (FL) is a distributed machine learning approach that trains models on user data guaranteeing clients' data privacy and minimal communication overhead
- Clients train a model locally and send updates to a central server, avoiding direct data sharing

Core Challenge: **Data Heterogeneity**

Clients' data is not identically distributed (non-IID) leading to unstable training and poor model performance

Introduction

Clustered FL to tackle data heterogeneity

 Clustered FL: clients are partitioned into clusters based on the similarity of their data distributions.

Instead of one global model, each cluster trains its own model

Group-level personalization ⇒ less prone to overfitting than fully personalized FL

• **FedGWC** (Federated Gaussian Weighting Clustering) is a lightweight clustered FL algorithm that iteratively groups clients based on the learning pattern similarities through **local loss processes**

Method

FedGWC Weighting Algorithm

- At each round t the participating clients \mathcal{P}_t communicate the local loss $l_k^{t,s} = \mathcal{L}_k(\theta_k^{t,s})$ for client k and updated local model $\theta_k^{t,s}$, where s denotes the local training iteration within the communication round
- The server computes the **Gaussian rewards** $\omega_k^t = 1/S \sum_{s=1}^S r_k^{t,s}$ with $r_k^{t,s} = \exp\left(-\frac{(l_k^{t,s} \mu^{t,s})^2}{(\sigma^{t,s})^2}\right)$ w.r.t. the average loss process $\mu^{t,s}$

High rewards ($\omega_k^t \simeq 1$) indicate client's loss is close to the average process \Longrightarrow "in-distribution" **Low rewards** ($\omega_k^t \simeq 0$) indicate client's loss is far from the average process \Longrightarrow "out-of-distribution"

Method

FedGWC Clustering

Can we infer a complex communication structure from a single scalar value?

1. The server iteratively updates the **interaction matrix** P^t , where $P^t_{k,j}$ estimates how client k is perceived by client j

$$P_{k,j}^{t+1} = \begin{cases} (1 - \alpha_t) P_{k,j}^t + \alpha_t \omega_k^t & (k,j) \in \mathcal{P}_t \times \mathcal{P}_t \\ P_{k,j}^t & (k,j) \notin \mathcal{P}_t \times \mathcal{P}_t \end{cases}$$

- 2. When $MSE(P^{t+1} P^t) < \epsilon$ the server computes the symmetric affinity matrix W, applying a RBF kernel to the rows of P^{t+1}
- 3. Spectral clustering is performed on W with different number of clusters $n \in \{2,...,n_{max}\}$ and for each cluster the **Davies-Bouldin score** DB_n is computed

If $DB_n \ge 1 \,\forall n \in \{2,...,n_{max}\}$ the server does not cluster clients \Longrightarrow **no heterogeneity** Otherwise the server splits the clients into n_{cl} clusters, where $n_{cl} \in \arg\min_{n=2,...,n_{max}} DB_n$

4. For each detected cluster, steps (1),(2), and (3) are recursively repeated

A new metric for Clustered FL

Wasserstein Adjusted Score

Problem: Standard clustering metrics are not effective in FL scenarios to evaluate cluster quality when client data is imbalanced

The Wasserstein Adjusted Score (WAS)

 We introduce WAS to quantify cluster cohesion in terms of class distribution. The distance between clients j and k is

$$d(j,k) = \left(\frac{1}{C} \sum_{i=1}^{C} (x_{(i)}^k - x_{(i)}^j)^2\right)^{1/2}$$

where C denotes the total number of classes, and $x_{(i)}^k$ and $x_{(i)}^j$ their **ranked class frequencies**

• This metric is theoretically equivalent to computing the **Wasserstein distance** between clients data empirical class distributions (Theorem B.3)

Experimental Results

FedGWC vs. Baselines

On heterogeneous Cifar100 with 100 clients FedGWC outperforms clustering baselines;
a significant increase in accuracy is observed when clusters are detected

		FL method	С	Automatic Cluster Selection	Acc	WAS↑	WADB ↓
Cifar100	Clustered FL	IFCA	5	×	47.5 ± 3.5	-0.8 \pm 0.2	5.2 ± 5.1
		FeSem	5	×	53.4 ± 1.8	-0.3 ± 0.1	38.4 ± 13.0
	uste FL	CFL	1	✓	41.6 ± 1.3	/	/
	ひ	FedGWC	4	/	$\textbf{53.4} \pm \textbf{0.4}$	$\textbf{0.1}\pm\textbf{0.0}$	$\textbf{2.4} \pm \textbf{0.4}$
	.ic	FedAvg	1	/	41.6± 1.3	/	1
	Classic FL	FedAvgM	1	/	41.5 ± 0.5	/	/
	ם ר	FedProx	1	/	$41.8 \!\pm 1.0$	/	1
Femnist	b	IFCA	5	×	76.7 ± 0.6	0.3 ± 0.1	0.5 ± 0.1
	Clustered FL	FeSem	2	×	75.6 ± 0.2	0.0 ± 0.0	25.6 ± 7.8
	uste FL	CFL	1	✓	76.0 ± 0.1	/	/
	Ü	FedGWC	4	/	76.1 ± 0.1	-0.2 ± 0.1	18.0 ± 6.2
	.ic	FedAvg	1	/	76.6 ± 0.1	/	1
	Classic FL	FedAvgM	1	/	$\textbf{83.3} \!\pm \textbf{0.3}$	/	/
	ם ב	FedProx	1	/	75.9 ± 0.2	/	1

FedGWC provides better performance also on large scale datasets (Google Landmarks Users-160K with around 800 clients and iNaturalist-Users-120k with round 2700 clients)

Dataset	FedGWC	CFL	IFCA	FedAvg	FedAvgM	FedProx	FairAvg
Google Landmarks	57.4 ±0.3	40.5 ± 0.2	49.4 ±0.3	40.5 ± 0.2	36.4 ± 1.3	40.2 ± 0.6	39.0 ± 0.3
iNaturalist	47.8 ±0.2	45.3 ±0.1	45.8 ±0.6	45.3 ±0.1	37.7 ±1.4	44.9 ±0.2	45.1 ±0.2

Experimental Results

Cluster Analysis

• FedGWC successfully detects different heterogeneity levels, separating homogeneous clients (Cifar10 with $\alpha=100$ labeled as Cluster 1) from heterogeneous clients (Cifar10 with $\alpha=0.05$ labeled as Cluster 0)

FedGWC successfully separates clients according to different visual domains (e.g. clients with blurred noisy data)

Dataset	(Clean, Noise, Blur)	Clustering method	C	Automatic Cluster Selection	Rand ↑ (max = 1.0)
		IFCA	1	×	0.5 ± 0.0
	(50, 50, 0)	FeSem	2	X	0.49 ± 0.2
		FedGWC	2	✓	$\textbf{1.0}\pm\textbf{0.0}$
C:f-::100	(50, 0, 50)	IFCA	1	×	0.5 ± 0.0
Cifar100		FeSem	2	X	0.51 ± 0.1
		FedGWC	2	✓	$\textbf{1.0}\pm\textbf{0.0}$
	(40, 30, 30)	IFCA	1	×	0.33 ± 0.0
		FeSem	3	×	0.55 ± 0.0
		FedGWC	4	1	$\textbf{0.6} \pm \textbf{0.0}$

Thank you for the kind attention!

Join us at the poster session on Wed. July 16th 11.00 AM- 1.30 PM (PDT)

Vancouver Convention Center, Vancouver, BC, Canada

Alessandro Licciardi alessandro.licciardi@polito.it

Davide Leo davide.leo2000@gmail.com

Polytechnic University of Turin (PoliTO), Italy

Interaction-Aware Gaussian Weighting for Clustered Federated Learning

A. Licciardi*, D. Leo*, E.Fanì, B. Caputo, M. Ciccone