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• Federated Learning (FL) is a distributed machine learning approach that trains models on user data 
guaranteeing clients’ data privacy and minimal communication overhead


• Clients train a model locally and send updates to a central server, avoiding direct data sharing 

Federated Learning framework and motivation
Introduction
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Core Challenge: Data Heterogeneity

Clients' data is not identically distributed (non-IID) leading to 
unstable training and poor model performance

Regularization Methods Model Personalization Biased Client Selection Clustering

Solutions



• Clustered FL: clients are partitioned into clusters based on the similarity of their data 
distributions.

Clustered FL to tackle data heterogeneity
Introduction
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Local Training Classic FL Clustered FL

• FedGWC (Federated Gaussian Weighting Clustering) is a lightweight clustered FL algorithm that 
iteratively groups clients based on the learning pattern similarities through local loss processes

Instead of one global model, each cluster trains its own model

Group-level personalization  less prone to overfitting than fully personalized FL⟹



• At each round  the participating clients  communicate the local loss  for client  and 
updated local model , where  denotes the local training iteration within the communication round
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FedGWC Weighting Algorithm
Method
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High rewards ( ) indicate client's loss is close to the average process  “in-distribution"ωt
k ≃ 1 ⟹

Low rewards ( ) indicate client’s loss is far from the average process ”out-of-distribution"ωt
k ≃ 0 ⟹

• The server computes the Gaussian rewards  with  w.r.t. 
the average loss process  
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FedGWC Clustering
Method
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 Can we infer a complex communication structure from a single scalar value?

1. The server iteratively updates the interaction matrix , where  estimates how client  is 
perceived by client 


2. When  the server computes the symmetric affinity matrix , applying a RBF 
kernel to the rows of 


3. Spectral clustering is performed on  with different number of clusters  and for each 
cluster the Davies-Bouldin score  is computed


4. For each detected cluster, steps (1),(2), and (3) are recursively repeated 
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If  the server does not cluster clients  no heterogeneityDBn ≥ 1∀n ∈ {2,…, nmax} ⟹

Otherwise the server splits the clients into  clusters, where ncl ncl ∈ arg min
n=2,…,nmax

DBn



Wasserstein Adjusted Score
A new metric for Clustered FL
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Problem: Standard clustering metrics are not effective in FL scenarios to evaluate cluster 
quality when client data is imbalanced

• We introduce WAS to quantify cluster cohesion in terms of class distribution. The distance between 
clients  and  is 


where  denotes the total number of classes, and  and  their ranked class frequencies


• This metric is theoretically equivalent to computing the Wasserstein distance between clients data 
empirical class distributions (Theorem B.3)
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FedGWC vs. Baselines
Experimental Results
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• On heterogeneous Cifar100 with 100 clients FedGWC outperforms clustering baselines;                 
a significant increase in accuracy is observed when clusters are detected

• FedGWC provides better performance also on large scale datasets (Google Landmarks Users-160K 
with around 800 clients and iNaturalist-Users-120k with round 2700 clients)



• FedGWC successfully detects different heterogeneity levels, separating homogeneous clients 
(Cifar10 with  labeled as Cluster 1) from heterogeneous clients (Cifar10 with 
labeled as Cluster 0)

α = 100 α = 0.05

Cluster Analysis
Experimental Results
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• FedGWC successfully separates clients according to different visual domains (e.g. clients with blurred 
noisy data)
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