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Introduction e
Federated Learning framework and motivation

e Federated Learning (FL) is a distributed machine learning approach that trains models on user data
guaranteeing clients’ data privacy and minimal communication overhead

e C(lients train a model locally and send updates to a central server, avoiding direct data sharing

Core Challenge: Data Heterogeneity

v

Clients' data is not identically distributed (non-IID) leading to

unstable training and poor model performance

Solutions

Regularization Methods Model Personalization Biased Client Selection -
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Introduction e
Clustered FL to tackle data heterogeneity

e Clustered FL: clients are partitioned into clusters based on the similarity of their data
distributions.

Instead of one global model, each cluster trains its own model

Group-level personalization — less prone to overfitting than fully personalized FL

o FedGWC (Federated Gaussian Weighting Clustering) is a lightweight clustered FL algorithm that
iteratively groups clients based on the learning pattern similarities through local loss processes

e = - N *
4 N\
D D - \\! “
Local Training Classic FL Clustered FL
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ICML
Method @ ! e
FedGWC Weighting Algorithm

At each round ¢ the participating clients %, communicate the local loss /* = #,(9*) for client k and
updated local model 6%, where s denotes the local training iteration within the communication round

lt,s L2
The server computes the Gaussian rewards o, = 1/SZ ro* With 7 = exp | - G —n) W.r.t.

s (GI,S)Z
the average loss process u* s=1

High rewards (o, ~ 1) indicate client’s loss is close to the average process = “in-distribution”

Low rewards (o, ~ 0) indicate client’s loss is far from the average process = "out-of-distribution”
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Method e

FedGWC Clustering

Can we infer a complex communication structure from a single scalar value?

\

1. The server iteratively updates the interaction matrix P’, where P, . estimates how client & is
perceived by client j
o {U —a)Ptaw, (k) EPXP,
R V¥ k,j) & P, x P,

2. When MSE(P™*! — P) < ¢ the server computes the symmetric affinity matrix W, applying a RBF
kernel to the rows of p*+!

3. Spectral clustering is performed on W with different number of clusters n € {2,...,n,,,.} and for each
cluster the Davies-Bouldin score DB, is computed

If DB, > 1Vn € {2,...,n,,,,} the server does not cluster clients = no heterogeneity

Otherwise the server splits the clients into n, clusters, where n, € arg min DB,

n=2,....R,

4. For each detected cluster, steps (1),(2), and (3) are recursively repeated
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A new metric for Clustered FL
Wasserstein Adjusted Score

Problem: Standard clustering metrics are not effective in FL scenarios to evaluate cluster
quality when client data is imbalanced

The Wasserstein Adjusted Score (WAS)
e We introduce WAS to quantify cluster cohesion in terms of class distribution. The distance between
clients j and k is
| C 172
SN k. j\2
d(]a k) — (E Zl (x(i) xgi)) >
where C denotes the total number of classes, and x(’j) and x{l,) their ranked class frequencies

e This metric is theoretically equivalent to computing the Wasserstein distance between clients data
empirical class distributions (Theorem B.3)
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Experimental Results

FedGWC vs. Baselines

e On heterogeneous Cifar100 with 100 clients FedGWC outperforms clustering baselines;

a significant increase in accuracy is observed when clusters are detected
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e FedGWC provides better performance also on large scale datasets (Google Landmarks Users-160K
with around 800 clients and iNaturalist-Users-120k with round 2700 clients)

Dataset FedGWC CFL IFCA FedAvg FedAvgM  FedProx  FairAvg
Google Landmarks | 57.4 +03 40.5 02 494 +03 40.5 +02 364 +13 40.2 +06 39.0 0.3
iNaturalist 47.8 0.2 453401 458 +06 453 +01 37.7+14 449 102 45.1 +02
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Experimental Results
Cluster Analysis

e FedGWC successfully detects different heterogeneity levels, separating homogeneous clients
(Cifar10 with a = 100 labeled as Cluster 1) from heterogeneous clients (Cifar10 with a = 0.05
labeled as Cluster 0)

Interaction Matrix Scaled Affinity Matrix Spectral Clustering Results
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e FedGWC successfully separates clients according to different visual domains (e.g. clients with blurred
noisy data)
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