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Conditional mean independence (CMI)

For random vectors X ∈ RdX , Y ∈ RdY and Z ∈ RdZ , we test the null hypothesis

H0 : E[Y |X = x, Z = z] = E[Y |Z = z] a.e. (x, z) ∈ RdX+dZ

against

H1 : P
(
E[Y |X, Z] 6= E[Y |Z]

)
> 0

given iid samples (Xi, Yi, Zi)n
i=1.

Conditional mean independence (CMI) testing plays an important role in various areas
of statistics and machine learning.
1. In traditional statistical applications, such as nonparametric regression, CMI testing identifies subsets
or functions of covariates that are useful to predict the response variable (omitted variable testing,

significance testing).

2. Variable importance measure is related to CMI [10].
3. In machine learning, CMI testing has broad applications in areas like interpretable machine learning
[8] and representation learning [1, 6].

Challenges and Motivations

1, Performance deterioration in high dimensional setting.

This issue primarily arises from the estimation of the conditional mean functions

r(z) := E[Y |Z = z] and m(x, z) := E[Y |X = x, Z = z].
Early CMI tests, such as those in [5, 4], relied on kernel smoothing methods.

Consequently, these CMI tests suffer from the curse of dimensionality: their

performance declines significantly as the dimensions dZ , dX + dZ are moderate or large

[11, Section 1].

2. Theoretical size guarantee.

Most existing CMI tests rely on sample estimation of the population CMI measure

Γ := E
[
(r(Z) − m(X, Z))2w(X, Z)

]
or its equivalent forms, where w is a positive weight

function.

Γ uniquely characterize CMI: Γ = 0 if and only if H0 holds.

A common plug-in estimator of Γ is given by

Γ̂(r̂, m̂) = n−1
n∑

i=1
(r̂(Zi) − m̂(Xi, Zi))2w(Xi, Zi),

where r̂ and m̂ are nonparametric estimators of the conditional mean functions.

Two key issues:
1. Γ̂(r̂, m̂) suffers from a degeneracy problem: under H0, Γ̂(r̂, m̂) converges to zero at a rate faster than
the n−1/2 rate at which Γ̂(r, m) − Γ converges to a non-degenerate limiting distribution under the
alternative [5, Section 1].

2. The nonparametric estimation errors for r(z) and m(x, z) typically decay slower than the n−1/2

parametric rate, and the convergence rate of Γ̂(r̂, m̂) under H0 depends heavily on how quickly these
errors decay.

3, Weak power against local alternatives.

CMI tests in [5, 10, 3] fail to detect local alternatives with signal strength ∆n :=√
E[(r(Z) − m(X, Z))2] of order n−1/2.

1. Test in [5] takes the form nhs/2Γ̂, where h → 0 is a kernel smoothing bandwidth
parameter, s = dZ or dX + dZ , and it cannot detect local alternatives converging to the

null faster than n−1/2h−s/4.

2. Tests in [10, 3] use the population CMI measure Γ0 = Γ1 − Γ2, where Γ1=E[(Y −r(Z))2]
and Γ2=E[(Y −m(X, Z))2], which is equivalent to Γ. Since the quadratic terms Γ1 and Γ2
can only be estimated at the n−1/2 rate, these tests can only detect local alternatives

with ∆n of order n−1/4.

3. [2] employs an unequal sample splitting approach, with proportionally more data

dedicated to conditional mean functions estimation, which may result in significant

power loss in practice.

Our Approach

Anew test that addresses all three challenges based on a novel population CMImeasure.

1. The sample version of the population measure is in multiplicative form, which is key

to mitigating the impact of estimation errors in nonparametric nuisance parameters

(i.e., the conditional mean functions).

2. Our test requires estimating r(z) = E[Y |Z = z] and the conditional mean embedding
(CME) of X given Z into a reproducing kernel Hilbert space (RKHS) on the space of
X .

3. The CME is estimated using the Monte Carlo method with samples generated from

a trained generative neural network (GNN).

Appealing Features of our method

1. Good empirical performance when dX, dY , dZ are large.

2. The test achieves asymptotic size control under H0.

3. The test exhibits nontrivial power against local alternatives in an

n−1/2-neighborhood of H0.

Background: CME

Let 〈 · , · 〉H and ‖ · ‖H denote the associated inner product and the induced norm of a
generic RKHS H with kernel K : Rd × Rd → R.

H := span{f (x) =
n∑

i=1
aiK(xi, x) : ai ∈ R, xi ∈ Rd, n = 1, 2, , . . . }

For two generic random variables W , V taking values in the domain of H. E[K(W, ·)] is
the (kernel) mean embedding of PW into H, which is the unique element in H such
that E[f (W )] = 〈f, E[K(W, ·)〉H for any f ∈ H.

Background: Conditional Sampling

Noise-outsourcing Lemma

For any integerm ≥ 1, there exist measurable functionGX such that for any η ∼ N(0, Im)
that is independent of (X, Z), we have GX(η, Z) | Z ∼ PX|Z .

GX can be estimated by GNN ĜX : Rm × RdZ → RdX .

To estimate the CME E[ KX(X, ·) | Z = z] for any z ∈ RdZ , one can first generate M
i.i.d. samples of {ηi}M

i=1 from N(0, Im), and then estimate the CME by the sample
average Ê[ KX(X, ·) | Z = z] : = M−1 ∑M

i=1 KX(ĜX(ηi, z), ·).

Background: GMMN

The generative moment matching networks (GMMN) (we call it conditional generator)

ĜX for approximating PX|Z is obtained by minimizing the sample version of the
squared Maximum Mean Discrepancy (MMD) between PXZ and the induced joint

distribution PX̂Z from the estimated X̂ = ĜX(η, Z) based on a generic set of training
data {(Xi, Zi)}nT

i=1 with training sample size nT and MnT latent variables
{ηm

i : i = 1, . . . , nT , m = 1, . . . , M}:

ĜX = arg min
GX∈GX

1
nT (nT −1)

∑
k 6=`

k,`∈[nT ]

Û(Xk, X`) · KZ(Zk, Z`), (1)

with Û(Xk, X`) = KX(Xk, X`) − 1
M

M∑
m=1

KX

(
Xk, GX(ηm

` , Z`)
)

− 1
M

M∑
m=1

KX

(
X`, GX(ηm

k , Zk)
)
+ 1

M

M∑
m=1

KX

(
GX(ηm

k , Zk), GX(ηm
` , Z`)

)
,

where GX is an approximation family, such as (deep) neural networks, for the

conditional generators.

Figure 1. Example architecture of GMMN.

Population CMI Measure

Proposition 1

If E[‖Y ‖2
2] < ∞, then the following properties are equivalent to each other:

a E[Y |X, Z] = E[Y |Z] a.s.-PXZ .

b E
[(

f (X, Z) − E[f (X, Z)|Z]
)

Y
]

= 0 for any f ∈ L2(RdX+dZ ,PXZ).
c E

[(
f (X, Z) − E[f (X, Z)|Z]

) (
Y − E[Y |Z]

)]
= 0 for any f ∈ L2(RdX+dZ ,PXZ).

Let KX : RdX × RdX and KZ : RdZ × RdZ denote two symmetric positive-definite kernel

functions that define two reproducing kernel Hilbert spaces (RKHS) HX and HZ over

the spaces of X and Z , respectively.

Let K0 = KX × KZ with H0 being the corresponding RKHS induced by K0.

Define linear operator Σ : RdY → H0,

Σ c =E
{[

K0
(
(X, Z), ·

)
− E

[
K0

(
(X, Z), ·

)∣∣Z]][
Y − E[Y |Z]

]>
c
}

, for any c ∈ RdY .

From the reproducing property, we see that for any f ∈ H0 and any c ∈ RdY ,

〈f, Σ c〉H0 =E
{[

f (X, Z) − E[f (X, Z)|Z]
][

Y − E[Y |Z]
]>

c
}

.

Assume H0 is dense in L2(RdX+dZ , PXZ), which holds if KX and KZ are L2- or

c0-universal kernels [9, Theorem 5], such as the Gaussian and Laplacian kernels.

H0 holds if and only if Σ is the zero operator (i.e., Σc = 0 ∈ H0 for any c ∈ RdY ).

Our proposed population CMI measure is defined as

Γ∗ = E
[
U(X, X ′) V (Y, Y ′) KZ(Z, Z ′)

]
, (2)

where V (Y, Y ′)=
[
Y −gY (Z)

]>[
Y ′−gY (Z ′)

]
and U(X, X ′) = KX(X, X ′) − 〈gX(Z), KX(X ′, ·)〉HX

−
〈 gX(Z ′), KX(X, ·)〉HX

+ 〈gX(Z), gX(Z ′)〉HX
. Here, (X ′, Y ′, Z ′) is an independent copy of (X, Y, Z),

gY (·)=E[Y |Z= · ] ∈ RdY and gX(·)=E[ KX(X, ·) | Z= · ] ∈ HX .

The squared Hilbert-Schmidt norm of Σ satisfies ‖Σ‖2
HS = Γ∗.

H0 holds if and only if Γ∗ = 0.

Sample Estimation

Sample version of Γ∗ takes the form of a U-statistic.

〈gX(Zi), KX(Xj, ·)〉HX
= E

[
KX(Xi, Xj)

∣∣Zi, Xj

]
can be estimated by:

1
M

M∑
m=1

KX(X(m)
i , Xj),

where {X
(m)
i }M

m=1 are sampled from the (estimated) conditional distribution PXi|Zi
.

〈gX(Zi), gX(Zj)〉HX
= E

[
KX(Xi, Xj)

∣∣Zi, Zj

]
can be estimated by:

1
M

M∑
m=1

KX(X(m)
i , X

(m)
j ),

gY : RdZ → RdY is estimated by a DNN ĝY .

Implementation

Adopt a sample splitting and cross fitting framework to train GNNs. Divide the samples

into two folds: D1 = {(Xi, Yi, Zi)}n/2
i=1 and D2 = {(Xi, Yi, Zi)}n

i=n/2+1.

Step 1: Networks training + synthetic data generation

Step 2: Construct centered kernel matrices on D1

Step 3: Calculate sample version of Γ∗

T̂1 = 1
n
2(n

2 − 1)
∑

j,k∈[n/2],j 6=k

Û(Xj, Xk)V̂ (Yj, Yk)KZ(Zj, Zk) (3)

Step 4: Switch the role of D1 and D2 to claculate T̂2, then our statistic is

T̂n = (T̂1 + T̂2)/2 (4)

AWild Bootstrap Procedure for Test Calibration

For each b = 1, 2, . . . , B, generate n i.i.d. random multipliers {ebi}n
i=1 from the standard

normal distribution N(0, 1).
A bootstrap version of T̂n is then defined as

T̂ b
n = 1

2

2∑
s=1

{
1

n
2(n

2 − 1)
∑
j 6=k

Xj,Xk∈Ds

Û(Xj, Xk)V̂ (Yj, Yk)KZ(Zj, Zk)ebj ebk

}
. (5)

We then reject H0 at level γ ∈ (0, 1) if 1
B

∑B
b=1 1{T̂ b

n>T̂n} < γ.

Real Application

We examine whether covering specific regions of a facial image X affects the prediction

of facial expression Y using the FER2013 dataset.

Figure 2. Original facial images in FER2013 (first column) and the covered images with HRs: TL, nose, right

eye, mouth, left eye, eyes, face (Columns 2-8). From row 1 to 7, the expressions are ‘angry’, ‘disgust’, ‘fear’,

‘happy’, ‘sad’, ‘surprise’, ‘neutral’.

Following [3], we consider covering 7 hypothesized regions (HRs): top left corner (TL),

nose, right eye, mouth, left eye, eyes, and face.

We use 11,700 image-label pairs {(Xi, Yi)}11700
i=1 .

Xi are 48 × 48 grayscale images.
Yi ∈ {‘angry’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’, ‘neutral’} represented by {ei}7

i=1 ⊂ R7: vectors
with the ith component being one and the rest being zero.
Zi is Xi with some HR covered in black.

Test H0 : E[Y |X, Z] = E[Y |Z] for different HR.
T̂n is calculated 10 times on different samples (size n = 2000) generated using stratified
sampling.

DSPM statistics [3] are evaluated under 0-1 loss and CE loss.

Compare test accuracies from a VGG network [7] trained on (Yi, Zi) against the
baseline accuracy from VGG net trained on (Yi, Xi).

T̂n correctly identifies the nose and TL as non-discriminative regions, while rejecting H0
for other HRs, consistent with their lower test accuracies. DSPM p-values vary by loss

function, with CE loss exhibiting stronger detecting power but inflated type-I error for TL

and nose.

Figure 3. Box plot of the p-values (left y-axis) and the test accuracies (red line, right y-axis) for different HRs.
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