

Conditional mean independence (CMI)

WashU

• For random vectors $X \in \mathbb{R}^{d_X}$, $Y \in \mathbb{R}^{d_Y}$ and $Z \in \mathbb{R}^{d_Z}$, we test the null hypothesis $H_0: \mathbb{E}[Y|X=x,Z=z] = \mathbb{E}[Y|Z=z] \ a.e. \ (x,z) \in \mathbb{R}^{d_X+d_Z}$

against

$$H_1: \mathbb{P}(\mathbb{E}[Y|X,Z] \neq \mathbb{E}[Y|Z]) > 0$$

given iid samples $(X_i, Y_i, Z_i)_{i=1}^n$.

UNIVERSITY OF MARYLAND

- Conditional mean independence (CMI) testing plays an important role in various areas of statistics and machine learning.
- 1. In traditional statistical applications, such as nonparametric regression, CMI testing identifies subsets or functions of covariates that are useful to predict the response variable (omitted variable testing, significance testing)
- 2. Variable importance measure is related to CMI [10].
- 3. In machine learning, CMI testing has broad applications in areas like interpretable machine learning [8] and representation learning [1, 6].

Challenges and Motivations

1, Performance deterioration in high dimensional setting.

- This issue primarily arises from the estimation of the conditional mean functions $r(z):=\mathbb{E}[Y|Z=z]$ and $m(x,z):=\mathbb{E}[Y|X=x,Z=z].$
- Early CMI tests, such as those in [5, 4], relied on kernel smoothing methods.
- Consequently, these CMI tests suffer from the curse of dimensionality: their performance declines significantly as the dimensions d_Z , $d_X + d_Z$ are moderate or large [11, Section 1].

2. Theoretical size guarantee.

- Most existing CMI tests rely on sample estimation of the population CMI measure $\Gamma:=\mathbb{E}\big[(r(Z)-m(X,Z))^2w(X,Z)\big]$ or its equivalent forms, where w is a positive weight function.
- Γ uniquely characterize CMI: $\Gamma = 0$ if and only if H_0 holds.
- A common plug-in estimator of Γ is given by

$$\widehat{\Gamma}(\widehat{r},\widehat{m}) = n^{-1} \sum_{i=1}^{n} (\widehat{r}(Z_i) - \widehat{m}(X_i, Z_i))^2 w(X_i, Z_i),$$

where \hat{r} and \hat{m} are nonparametric estimators of the conditional mean functions.

- Two key issues:
- 1. $\widehat{\Gamma}(\widehat{r},\widehat{m})$ suffers from a degeneracy problem: under H_0 , $\widehat{\Gamma}(\widehat{r},\widehat{m})$ converges to zero at a rate faster than the $n^{-1/2}$ rate at which $\widehat{\Gamma}(r,m) \Gamma$ converges to a non-degenerate limiting distribution under the alternative [5, Section 1].
- 2. The nonparametric estimation errors for r(z) and m(x,z) typically decay slower than the $n^{-1/2}$ parametric rate, and the convergence rate of $\widehat{\Gamma}(\widehat{r},\widehat{m})$ under H_0 depends heavily on how quickly these errors decay.

3, Weak power against local alternatives.

CMI tests in [5, 10, 3] fail to detect local alternatives with signal strength $\Delta_n := \sqrt{\mathbb{E}[(r(Z) - m(X, Z))^2]}$ of order $n^{-1/2}$.

- 1. Test in [5] takes the form $nh^{s/2}\widehat{\Gamma}$, where $h\to 0$ is a kernel smoothing bandwidth parameter, $s=d_Z$ or d_X+d_Z , and it cannot detect local alternatives converging to the null faster than $n^{-1/2}h^{-s/4}$.
- 2. Tests in [10, 3] use the population CMI measure $\Gamma_0 = \Gamma_1 \Gamma_2$, where $\Gamma_1 = \mathbb{E}[(Y r(Z))^2]$ and $\Gamma_2 = \mathbb{E}[(Y m(X, Z))^2]$, which is equivalent to Γ . Since the quadratic terms Γ_1 and Γ_2 can only be estimated at the $n^{-1/2}$ rate, these tests can only detect local alternatives with Δ_n of order $n^{-1/4}$.
- 3. [2] employs an unequal sample splitting approach, with proportionally more data dedicated to conditional mean functions estimation, which may result in significant power loss in practice.

Our Approach

A new test that addresses all three challenges based on a novel population CMI measure

- 1. The sample version of the population measure is in multiplicative form, which is key to mitigating the impact of estimation errors in nonparametric nuisance parameters (i.e., the conditional mean functions).
- 2. Our test requires estimating $r(z) = \mathbb{E}[Y|Z=z]$ and the conditional mean embedding (CME) of X given Z into a reproducing kernel Hilbert space (RKHS) on the space of X.
- 3. The CME is estimated using the Monte Carlo method with samples generated from a trained generative neural network (GNN).

Appealing Features of our method

- 1. Good empirical performance when d_X, d_Y, d_Z are large.
- 2. The test achieves asymptotic size control under H_0 .
- 3. The test exhibits nontrivial power against local alternatives in an $n^{-1/2}$ -neighborhood of H_0 .

Background: CME

• Let $\langle \cdot, \cdot \rangle_{\mathbb{H}}$ and $\| \cdot \|_{\mathbb{H}}$ denote the associated inner product and the induced norm of a generic RKHS \mathbb{H} with kernel $\mathcal{K} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.

$$\mathbb{H} := \overline{\operatorname{span}}\{f(x) = \sum_{i=1}^n a_i \mathcal{K}(x_i, x) : a_i \in \mathbb{R}, x_i \in \mathbb{R}^d, n = 1, 2, \dots\}$$

• For two generic random variables W, V taking values in the domain of \mathbb{H} . $\mathbb{E}[\mathcal{K}(W, \cdot)]$ is the **(kernel) mean embedding** of P_W into \mathbb{H} , which is the unique element in \mathbb{H} such that $\mathbb{E}[f(W)] = \langle f, \mathbb{E}[\mathcal{K}(W, \cdot)\rangle_{\mathbb{H}}$ for any $f \in \mathbb{H}$.

Background: Conditional Sampling

Noise-outsourcing Lemma

For any integer $m \geq 1$, there exist measurable function \mathbb{G}_X such that for any $\eta \sim N(0, I_m)$ that is independent of (X, Z), we have $\mathbb{G}_X(\eta, Z) \mid Z \sim P_{X \mid Z}$.

- \mathbb{G}_X can be estimated by GNN $\widehat{\mathbb{G}}_X$: $\mathbb{R}^m \times \mathbb{R}^{d_Z} \to \mathbb{R}^{d_X}$.
- To estimate the CME $\mathbb{E}[\mathcal{K}_X(X,\cdot) | Z=z]$ for any $z\in\mathbb{R}^{d_Z}$, one can first generate M i.i.d. samples of $\{\eta_i\}_{i=1}^M$ from $N(0,I_m)$, and then estimate the CME by the sample average $\widehat{\mathbb{E}}[\mathcal{K}_X(X,\cdot) | Z=z]:=M^{-1}\sum_{i=1}^M \mathcal{K}_X(\widehat{\mathbb{G}}_X(\eta_i,z),\cdot)$.

Background: GMMN

The generative moment matching networks (GMMN) (we call it conditional generator) $\widehat{\mathbb{G}}_X$ for approximating $P_{X|Z}$ is obtained by minimizing the sample version of the squared Maximum Mean Discrepancy (MMD) between P_{XZ} and the induced joint distribution $P_{\widehat{X}Z}$ from the estimated $\widehat{X} = \widehat{\mathbb{G}}_X(\eta,Z)$ based on a generic set of training data $\{(X_i,Z_i)\}_{i=1}^{n_T}$ with training sample size n_T and Mn_T latent variables $\{\eta_i^m: i=1,\ldots,n_T,\ m=1,\ldots,M\}$:

$$\widehat{\mathbb{G}}_{X} = \underset{\mathbb{G}_{X} \in \mathcal{G}_{X}}{\operatorname{arg\,min}} \frac{1}{n_{T}(n_{T}-1)} \sum_{\substack{k \neq \ell \\ k,\ell \in [n_{T}]}} \widehat{U}(X_{k}, X_{\ell}) \cdot \mathcal{K}_{Z}(Z_{k}, Z_{\ell}),$$
with
$$\widehat{U}(X_{k}, X_{\ell}) = \mathcal{K}_{X}(X_{k}, X_{\ell}) - \frac{1}{M} \sum_{m=1}^{M} \mathcal{K}_{X} \left(X_{k}, \mathbb{G}_{X}(\eta_{\ell}^{m}, Z_{\ell})\right)$$

$$-\frac{1}{M} \sum_{k=1}^{M} \mathcal{K}_{X} \left(X_{\ell}, \mathbb{G}_{X}(\eta_{k}^{m}, Z_{k})\right) + \frac{1}{M} \sum_{k=1}^{M} \mathcal{K}_{X} \left(\mathbb{G}_{X}(\eta_{k}^{m}, Z_{k}), \mathbb{G}_{X}(\eta_{\ell}^{m}, Z_{\ell})\right),$$

$$(1)$$

where \mathcal{G}_X is an approximation family, such as (deep) neural networks, for the conditional generators.

Figure 1. Example architecture of GMMN.

Population CMI Measure

Proposition 1

If $\mathbb{E}[\|Y\|_2^2] < \infty$, then the following properties are equivalent to each other:

- a $\mathbb{E}[Y|X,Z] = \mathbb{E}[Y|Z]$ a.s.- \mathbb{P}_{XZ} .
- b $\mathbb{E}\left[\left(f(X,Z)-\mathbb{E}[f(X,Z)|Z]\right)Y\right]=0$ for any $f\in L_2(\mathbb{R}^{d_X+d_Z},\mathbb{P}_{XZ}).$
- $\mathbb{E}\left[\left(f(X,Z)-\mathbb{E}[f(X,Z)|Z]\right)\left(Y-\mathbb{E}[Y|Z]\right)
 ight]=0 ext{ for any } f\in L_2(\mathbb{R}^{d_X+d_Z},\mathbb{P}_{XZ}).$
- Let $\mathcal{K}_X : \mathbb{R}^{d_X} \times \mathbb{R}^{d_X}$ and $\mathcal{K}_Z : \mathbb{R}^{d_Z} \times \mathbb{R}^{d_Z}$ denote two symmetric positive-definite kernel functions that define two reproducing kernel Hilbert spaces (RKHS) \mathbb{H}_X and \mathbb{H}_Z over the spaces of X and Z, respectively.
- Let $\mathcal{K}_0 = \mathcal{K}_X \times \mathcal{K}_Z$ with \mathbb{H}_0 being the corresponding RKHS induced by \mathcal{K}_0 .
- Define linear operator $\Sigma: \mathbb{R}^{d_Y} \to \mathbb{H}_0$,

$$\Sigma c = \mathbb{E}\Big\{\Big[\mathcal{K}_0\big((X,Z),\,\cdot\,\big) - \mathbb{E}\big[\mathcal{K}_0\big((X,Z),\,\cdot\,\big)\big|Z\big]\Big]\big[Y - \mathbb{E}[Y|Z]\big]^\top c\Big\}, \quad \text{for any } c \in \mathbb{R}^{d_Y}.$$

From the reproducing property, we see that for any $f \in \mathbb{H}_0$ and any $c \in \mathbb{R}^{d_Y}$, $\langle f, \Sigma c \rangle_{\mathbb{H}_0} = \mathbb{E} \Big\{ \big[f(X,Z) - \mathbb{E}[f(X,Z)|Z] \big] \big[Y - \mathbb{E}[Y|Z] \big]^\top c \Big\}.$

- Assume \mathbb{H}_0 is dense in $L_2(\mathbb{R}^{d_X+d_Z}, P_{XZ})$, which holds if \mathcal{K}_X and \mathcal{K}_Z are L_2 or c_0 -universal kernels [9, Theorem 5], such as the Gaussian and Laplacian kernels.
- H_0 holds if and only if Σ is the zero operator (i.e., $\Sigma c = 0 \in \mathbb{H}_0$ for any $c \in \mathbb{R}^{d_Y}$).

Our proposed population CMI measure is defined as

$$\Gamma^* = \mathbb{E}\left[U(X, X') V(Y, Y') \mathcal{K}_Z(Z, Z')\right],\tag{}$$

where $V(Y,Y')=[Y-g_Y(Z)]^{\top}[Y'-g_Y(Z')]$ and $U(X,X')=\mathcal{K}_X(X,X')-\langle g_X(Z),\mathcal{K}_X(X',\cdot)\rangle_{\mathbb{H}_X}-\langle g_X(Z'),\mathcal{K}_X(X,\cdot)\rangle_{\mathbb{H}_X}+\langle g_X(Z),g_X(Z')\rangle_{\mathbb{H}_X}.$ Here, (X',Y',Z') is an independent copy of (X,Y,Z), $g_Y(\cdot)=\mathbb{E}[Y|Z=\cdot]\in\mathbb{R}^{d_Y}$ and $g_X(\cdot)=\mathbb{E}[\mathcal{K}_X(X,\cdot)|Z=\cdot]\in\mathbb{H}_X.$

- The squared Hilbert-Schmidt norm of Σ satisfies $\|\Sigma\|_{\mathrm{HS}}^2 = \Gamma^*$.
- H_0 holds if and only if $\Gamma^* = 0$.

Sample Estimation

- Sample version of Γ^* takes the form of a U-statistic.
- $\langle g_X(Z_i), \mathcal{K}_X(X_j, \cdot) \rangle_{\mathbb{H}_X} = \mathbb{E} \big[\mathcal{K}_X(X_i, X_j) \big| Z_i, X_j \big]$ can be estimated by:

$$\frac{1}{M} \sum_{m=1}^{M} \mathcal{K}_X(X_i^{(m)}, X_j),$$

where $\{X_i^{(m)}\}_{m=1}^M$ are sampled from the (estimated) conditional distribution $P_{X_i|Z_i}$.

• $\langle g_X(Z_i), g_X(Z_j) \rangle_{\mathbb{H}_X} = \mathbb{E} \big[\mathcal{K}_X(X_i, X_j) \big| Z_i, Z_j \big]$ can be estimated by:

$$\frac{1}{M} \sum_{m=1}^{M} \mathcal{K}_{X}(X_{i}^{(m)}, X_{j}^{(m)}),$$

• $g_Y: \mathbb{R}^{d_Z} \to \mathbb{R}^{d_Y}$ is estimated by a DNN \widehat{g}_Y .

Implementation

Adopt a sample splitting and cross fitting framework to train GNNs. Divide the samples into two folds: $\mathcal{D}_1 = \{(X_i, Y_i, Z_i)\}_{i=1}^{n/2}$ and $\mathcal{D}_2 = \{(X_i, Y_i, Z_i)\}_{i=n/2+1}^n$.

Step 1: Networks training + synthetic data generation

Step 2: Construct centered kernel matrices on \mathcal{D}_1

 $-\frac{1}{M}\sum\nolimits_{m=1}^{M}\mathcal{K}_{X}(X_{k},\widehat{X}_{j}^{(m)})+\frac{1}{M}\sum\nolimits_{m}^{M}\mathcal{K}_{X}(\widehat{X}_{j}^{(m)},\widehat{X}_{k}^{(m)})$

 $\widehat{V}(Y_j, Y_k) = \left[Y_j - \widehat{g}_Y(Z_j) \right]^{\top} \left[Y_k - \widehat{g}_Y(Z_k) \right].$

Step 3: Calculate sample version of Γ^*

$$\widehat{T}_1 = \frac{1}{\frac{n}{2}(\frac{n}{2} - 1)} \sum_{j,k \in [n/2], j \neq k} \widehat{U}(X_j, X_k) \widehat{V}(Y_j, Y_k) \mathcal{K}_Z(Z_j, Z_k)$$

Step 4: Switch the role of \mathcal{D}_1 and \mathcal{D}_2 to claculate \widehat{T}_2 , then our statistic is

$\widehat{T}_n = (\widehat{T}_1 + \widehat{T}_2)/2$

A Wild Bootstrap Procedure for Test Calibration

- For each $b=1,2,\ldots,B$, generate n i.i.d. random multipliers $\{e_{bi}\}_{i=1}^n$ from the standard normal distribution N(0,1).
- A bootstrap version of \widehat{T}_n is then defined as

Poster Session

$$\widehat{T}_{n}^{b} = \frac{1}{2} \sum_{s=1}^{2} \left\{ \frac{1}{\frac{n}{2}(\frac{n}{2}-1)} \sum_{\substack{j \neq k \\ X_{j}, X_{k} \in \mathcal{D}_{s}}} \widehat{U}(X_{j}, X_{k}) \widehat{V}(Y_{j}, Y_{k}) \mathcal{K}_{Z}(Z_{j}, Z_{k}) e_{bj} e_{bk} \right\}.$$

• We then reject H_0 at level $\gamma \in (0,1)$ if $\frac{1}{B} \sum_{b=1}^{B} \mathbf{1}_{\{\widehat{T}_n^b > \widehat{T}_n\}} < \gamma$.

Real Application

We examine whether covering specific regions of a facial image X affects the prediction of facial expression Y using the FER2013 dataset.

Figure 2. Original facial images in FER2013 (first column) and the covered images with HRs: TL, nose, right eye, mouth, left eye, eyes, face (Columns 2-8). From row 1 to 7, the expressions are 'angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'.

- Following [3], we consider covering 7 hypothesized regions (HRs): top left corner (TL), nose, right eye, mouth, left eye, eyes, and face.
- We use 11,700 image-label pairs $\{(X_i, Y_i)\}_{i=1}^{11700}$.
- X_i are 48×48 grayscale images. • $Y_i \in \{\text{'angry'}, \text{'disgust'}, \text{'fear'}, \text{'happy'}, \text{'sad'}, \text{'surprise'}, \text{'neutral'}\}$ represented by $\{e_i\}_{i=1}^7 \subset \mathbb{R}^7$: vectors
- with the *i*th component being one and the rest being zero. Z_i is X_i with some HR covered in black.
- Test $H_0: \mathbb{E}[Y|X,Z] = \mathbb{E}[Y|Z]$ for different HR.
- \widehat{T}_n is calculated 10 times on different samples (size n=2000) generated using stratified sampling.
- DSP $_M$ statistics [3] are evaluated under 0-1 loss and CE loss.
- Compare test accuracies from a VGG network [7] trained on (Y_i, Z_i) against the baseline accuracy from VGG net trained on (Y_i, X_i) .

 \widehat{T}_n correctly identifies the nose and TL as non-discriminative regions, while rejecting H_0 for other HRs, consistent with their lower test accuracies. DSP $_M$ p-values vary by loss function, with CE loss exhibiting stronger detecting power but inflated type-I error for TL and nose.

Figure 3. Box plot of the p-values (left y-axis) and the test accuracies (red line, right y-axis) for different HRs.

References

- [1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828, 2013.
- [2] Leheng Cai, Xu Guo, and Wei Zhong. Test and measure for partial mean dependence based on machine learning methods.
 Journal of the American Statistical Association, 0(ja):1–32, 2024.
 [3] Ben Dai, Xiaotong Shen, and Wei Pan. Significance tests of feature relevance for a black-box learner. *IEEE transactions on*
- neural networks and learning systems, 35(2):1898–1911, 2022.

 [4] Miguel A Delgado and Wenceslao González Manteiga. Significance testing in nonparametric regression based on the bootstrap. The Annals of Statistics, 29(5):1469–1507, 2001.
- [5] Yanqin Fan and Qi Li. Consistent model specification tests: omitted variables and semiparametric functional forms. *Econometrica*: Journal of the econometric society, pages 865–890, 1996.
- [6] Jian Huang, Yuling Jiao, Xu Liao, Jin Liu, and Zhou Yu. Deep dimension reduction for supervised representation learning.
 IEEE Transactions on Information Theory, 2024.
 [7] Yousif Khaireddin and Zhuofa Chen. Facial emotion recognition: State of the art performance on fer2013. arXiv preprint
- arXiv:2105.03588, 2021.
 [8] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Interpretable machine learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592, 2019.
- [9] Zoltán Szabó and Bharath K Sriperumbudur. Characteristic and universal tensor product kernels. *Journal of Machine Learning Research*, 18(233):1–29, 2018.
 [10] Brian D Williamson, Peter B Gilbert, Marco Carone, and Noah Simon. Nonparametric variable importance assessment using
- machine learning techniques. *Biometrics*, 77(1):9–22, 2021.

 [11] Xingyu Zhou, Yuling Jiao, Jin Liu, and Jian Huang. A deep generative approach to conditional sampling. *Journal of the American Statistical Association*, 118(543):1–12, 2022.

shaox@wustl.edu