

The space of possible materials is intractably vast

A rough estimate: 10¹⁶⁰

Even if quantum mechanical computation (DFT) is replaced with a 1000x faster algorithm we can't screen all

Material Generation Problem Statement

- A crystal consists of:
 - A 3D point cloud of atoms, including coordinates and chemical elements
 - Lattice parameters
- The goal is to generate crystals that are
 - Stable under normal conditions
 - Novel: not present in the training data

- Atom types are discrete, coordinates are continuous
- 2. The number of atoms varies
- 3. Structures are permutation, rotation and translation invariant
- 4. Lots of local energy minima

Symmetries in Crystals

Most Real Crystals Have Internal Symmetry

Space group other than P1 indicates presence of symmetry beyond the lattice translation

Wyckoff Positions

Wyckoff Positions for a Space Group

Wyckoff Positions of Group *I4/mmm* **(No. 139)**

B #	Wyckoff letter	Site symmetry	Coordinates			
Multiplicity			(0,0,0) + (1/2,1/2,1/2) +			
32	0	1	(x,y,z) (-x,-y,z) (-y,x,z) (y,-x,z) (-x,y,-z) (x,-y,-z) (y,x,-z) (-y,-x,-z) (-x,-y,-z) (x,y,-z) (y,-x,-z) (-y,x,-z) (x,-y,z) (-x,y,z) (-y,-x,z) (y,x,z)			
16	n	.m.	(0,y,z) (0,-y,z) (-y,0,z) (y,0,z) (0,y,-z) (0,-y,-z) (y,0,-z) (-y,0,-z)			
16	m	m	(x,x,z) (-x,-x,z) (-x,x,z) (x,-x,z) (-x,x,-z) (x,-x,-z) (x,x,-z) (-x,-x,-z)			
16	I	m	(x,y,0) (-x,-y,0) (-y,x,0) (y,-x,0) (-x,y,0) (x,-y,0) (y,x,0) (-y,-x,0)			
16	k	2	(x,x+1/2,1/4) (-x,-x+1/2,1/4) (-x+1/2,x,1/4) (x+1/2,-x,1/4) (-x,-x+1/2,3/4) (x,x+1/2,3/4) (x+1/2,-x,3/4) (-x+1/2,x,3/4)			
8	j	m2m .	(x,1/2,0) (-x,1/2,0) (1/2,x,0) (1/2,-x,0)			
8	i	m2m .	(x,0,0) (-x,0,0) (0,x,0) (0,-x,0)			
8	h	m.2 m	(x,x,0) (-x,-x,0) (-x,x,0) (x,-x,0)			
8	g	2mm .	(0,1/2,z) (1/2,0,z) (0,1/2,-z) (1/2,0,-z)			
8	f	2/m	(1/4,1/4,1/4) (3/4,3/4,1/4) (3/4,1/4,1/4) (1/4,3/4,1/4)			
4	е	4mm	(0,0,z) (0,0,-z)			
4	d	-4m2	(0,1/2,1/4) (1/2,0,1/4)			
4	С	mmm .	(0,1/2,0) (1/2,0,0)			
2	b	4/mmm	(0,0,1/2)			
2	а	4/mmm	(0,0,0)			

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

Wyckoff Positions as Tokens

Space Group Element

Site Symmetry

Enumeration

225

Mg

m-3m

m-3m

Tm

1

Hg

-43m

0

Relaxation: DiffCSP++

 \mathcal{M}_{t-1}

liao, Rui, et al. "Crystal structure prediction by joint equivariant diffusion." Advances in Neural Information Processing Systems 36 (2023): 17464-17497.

 $oldsymbol{F}_{t-1}, oldsymbol{A}_{t-1}$

 \mathcal{M}_0

Wyckoff Position Constraints

Wyckoff Transformer

An autoregressive generative Transformer:

- Encoder-only
- Permutation-invariant: no positional encoding, shuffle token order
- Predict the probability for the next part of token

Results

Table 1. Evaluation. Symmetry metrics are computed only using novel structurally valid examples. Note that the 1000 and 105-example metrics are computed using MP-20 train and validation as reference datasets for novelty, while the $10\,000$ -example S.U.N. only uses MP-20 train to remain compatible with the reported values. **Bold** indicates the values within p=0.1 statistical significance threshold from the best. Values marked by *were computed by Miller et al. (2024), the rest by us; see note H.1 for an important caveat; in short, the values in (brackets) are less accurate, but are compatible with each other.

Method/Metric	Novel Unique Templates (#) ↑	P1 (%) ref = 1.7	Space Group $\chi^2 \downarrow$	S.U.N. % \uparrow $E_{\rm bull} <$	S.S.U.N. % ↑ 80 meV	S.U.N. $\% \uparrow$ $E_{\text{hull}} < 0 \text{ meV}$
Sample size	1000	1000	1000	105	105	10000
Relaxation	CHGNet	CHGNet	CHGNet	DFT	DFT	DFT
WyFormerCHGNet	180	3.24	0.223	23.1	22.3	_
WyFormerDiffCSP++	186	1.46	0.212	22.2	21.1	$3.83\ (4.14)$
DiffCSP++	10	2.57	0.255	14.4	14.4	_
CrystalFormer	74	0.91	0.276	20.1	20.1	_
SymmCD	101	2.35	0.24	20.7	20.7	_
WyCryst	165	4.79	0.710	5.5	5.5	_
DiffCSP	76	36.57	7.989	22.2	20.6	$-(3.34^*)$
FlowMM	51	44.27	12.423	17.8	16.9	-(2.34*)
WyFormer MPTS–52	386	0	0.225	-	_	_

The nature is elegant, so is WyFormer

WyFormer

- Best-in-class symmetryconditioned generation
- Relative 20% S.U.N. improvement
- Physics-motivated inductive bias
- Unparalleled inference speed