Differentially private boxplots

Jairo DIAZ-RODRIGUEZ York University, Canada

joint work with Kelly Ramsay

International Conference of Machine Learning.

June 14, 2025

\$8000

\$7500

Average public salary

Day 1: \$8666

\$8000

\$7000

\$10000

Average public salary

Day 1: \$8666

Day 2: \$8666

\$8000

Average public salary

Day 1: \$8666

Day 2: \$8666

Day 3: \$8400

\$7500

\$7000

Someone fired!

Day 1: \$8666

Day 2: \$8666

Day 3: \$8400

\$7500

\$10000

DP Average public salary

Day 1: \$8666 + noise

Day 2: \$8666 + noise

Day 3: \$8400 + noise

DP Average public salary

Day 1: \$8510

Day 2: \$8680

Day 3: \$8450

\$8000

\$10000

Someone fired?

Day 1: \$8510

Day 2: \$8680

Day 3: \$8450

A randomized function \mathcal{A} , which operates on datasets, is ϵ -differentially private if for any two datasets D and D' that differ in a single observation (these are often called adjacent datasets), and for all sets S of possible outputs of \mathcal{A} :

$$P(\mathcal{A}(D) \in S) \leq e^{\epsilon} \times P(\mathcal{A}(D') \in S)$$

Low High privacy budget (small ε) (big ε)

Day 1: \$8590 Day 1: \$8650

Day 2: \$8680 Day 2: \$8675

Day 3: \$8550 Day 3: \$8420

Low High privacy budget privacy budget (small arepsilon) (big arepsilon)

Day 1: \$8590 Day 1: \$8650

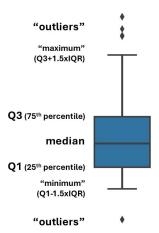
Day 2: \$8680 Day 2: \$8675

Day 3: \$8550 Day 3: \$8420

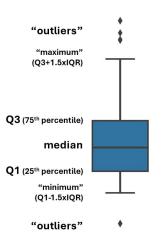
Challenge

Draw useful insights from datasets while protecting individual privacy

Boxplots



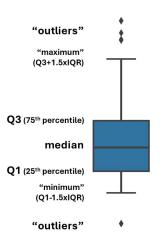
Boxplots



Data analysis with boxplots

- Location
- Scale
- Skewness
- Tails

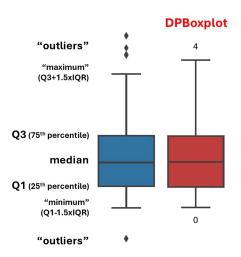
Boxplots



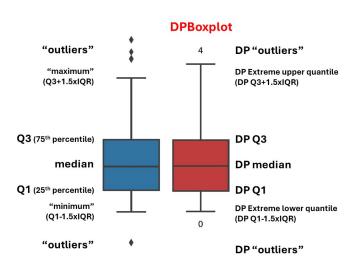
Challenge for differentially private boxplots

Draw useful insights from datasets while protecting individual privacy

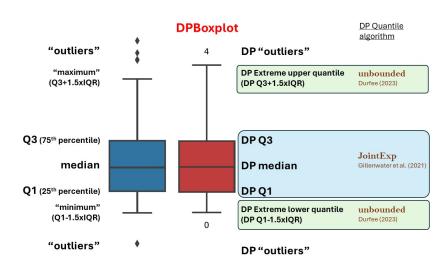
Differentialy private boxplots



Differentialy private boxplots



Differentialy private boxplots



Box

Box

• We used JointExp quantile estimation (Gillenwater et al., 2021).

Box

- We used JointExp quantile estimation (Gillenwater et al., 2021).
- Main theoretical contributions:
 - We proved a minimax lower bound for privately estimating a quantile which matches the upper bound.

Box

- We used JointExp quantile estimation (Gillenwater et al., 2021).
- Main theoretical contributions:
 - We proved a minimax lower bound for privately estimating a quantile which matches the upper bound.
 - This implies that the scale and location of the proposed private boxplot are estimated optimally, up to logarithmic factors.

Whiskers and outliers

• We used unbounded quantile estimation (Durfee, 2023).

- We used unbounded quantile estimation (Durfee, 2023).
- Main theoretical contributions:
 - JointExp is inconsistent for extreme quantiles.

- We used unbounded quantile estimation (Durfee, 2023).
- Main theoretical contributions:
 - JointExp is inconsistent for extreme quantiles.
 - We proved that whiskers and number of outliers are weakly consistent for their population counterparts when using unbounded.

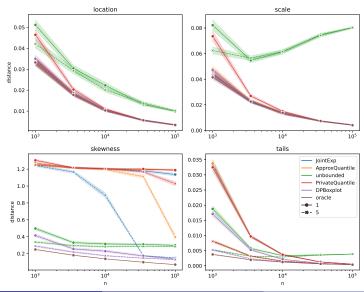
- We used unbounded quantile estimation (Durfee, 2023).
- Main theoretical contributions:
 - JointExp is inconsistent for extreme quantiles.
 - We proved that whiskers and number of outliers are weakly consistent for their population counterparts when using unbounded.
 - This implies that skewness and tails will be correctly portrayed by our proposed differentially private boxplot.

Simulation studies

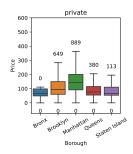
We performed an exhaustive simulation study under multiple settings:

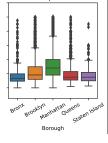
- Generating distributions: Normal, skew-normal, uniform, beta, real data.
- *ϵ*: 0.5, 1, 5, 10
- sample sizes: 1000, 2000, 10000, 20000, 10000
- We quantified similitude in location, scale, skewness, and tails between constructed private boxplot and the population counterpart.
- We compared with naive private boxplots constructed by using different private quantile estimation methods.

Simulation studies (summary)

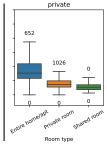


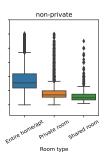
Do discernible patterns emerge in Airbnb listing prices across various boroughs in New York City and differing room types?



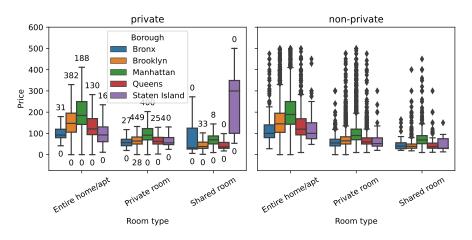


non-private

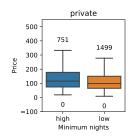


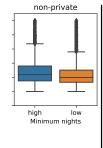


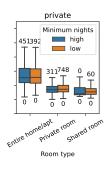
Do discernible patterns emerge in Airbnb listing prices across various boroughs in New York City and differing room types?

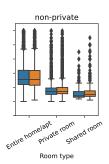


Are there observable trends in Airbnb listing prices concerning minimum nights required for reservation and the types of rooms offered?









Conclusions

• We observe relatively consistent patterns between the private and non-private boxplots.

Conclusions

- We observe relatively consistent patterns between the private and non-private boxplots.
- The primary visual disparities pertains to the positioning of whiskers on the boxplots and number of outliers. This underscores the recognized challenge associated with differentially private estimation of extreme quantiles and small sample sizes.

Conclusions

- We observe relatively consistent patterns between the private and non-private boxplots.
- The primary visual disparities pertains to the positioning of whiskers on the boxplots and number of outliers. This underscores the recognized challenge associated with differentially private estimation of extreme quantiles and small sample sizes.
- Discrepancies does not materially impede the analytical value of the visual findings.

Conclusions

- We observe relatively consistent patterns between the private and non-private boxplots.
- The primary visual disparities pertains to the positioning of whiskers on the boxplots and number of outliers. This underscores the recognized challenge associated with differentially private estimation of extreme quantiles and small sample sizes.
- Discrepancies does not materially impede the analytical value of the visual findings.
- This case study demonstrates the potential of differentially private, exploratory data analysis and confirms the efficacy of the differentially private boxplot, in accordance with our theoretical and simulated results.

Thank you.

Differentially private boxplots.

code: https://github.com/jairoadiazr/DPBoxplot