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Motivation

Differential Privacy (DP)

A randomized function A, which operates on datasets, is ϵ−differentially
private if for any two datasets D and D ′ that differ in a single observation
(these are often called adjacent datasets), and for all sets S of possible
outputs of A:

P(A(D) ∈ S) ≤ eϵ × P(A(D ′) ∈ S)
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Motivation

On DP Quantile estimation

Box

We used JointExp quantile estimation (Gillenwater et al., 2021).

Main theoretical contributions:
We proved a minimax lower bound for privately estimating a quantile
which matches the upper bound.
This implies that the scale and location of the proposed private
boxplot are estimated optimally, up to logarithmic factors.
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Motivation

On DP Quantile estimation

Whiskers and outliers

We used unbounded quantile estimation (Durfee, 2023).

Main theoretical contributions:
JointExp is inconsistent for extreme quantiles.
We proved that whiskers and number of outliers are weakly consistent
for their population counterparts when using unbounded.
This implies that skewness and tails will be correctly portrayed by our
proposed differentially private boxplot.
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Simulations

Simulation studies

We performed an exhaustive simulation study under multiple settings:

Generating distributions: Normal, skew-normal, uniform, beta, real
data.

ϵ: 0.5, 1, 5, 10

sample sizes: 1000, 2000, 10000, 20000, 10000

We quantified similitude in location, scale, skewness, and tails
between constructed private boxplot and the population counterpart.

We compared with naive private boxplots constructed by using
different private quantile estimation methods.
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Simulations

Simulation studies (summary)
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Real data

Real data

Do discernible patterns emerge in Airbnb listing prices across
various boroughs in New York City and differing room types?
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Real data

Real data

Are there observable trends in Airbnb listing prices concerning
minimum nights required for reservation and the types of rooms
offered?
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Conclusions

Real data

Conclusions

We observe relatively consistent patterns between the private and
non-private boxplots.

The primary visual disparities pertains to the positioning of whiskers
on the boxplots and number of outliers. This underscores the
recognized challenge associated with differentially private estimation
of extreme quantiles and small sample sizes.

Discrepancies does not materially impede the analytical value of the
visual findings.

This case study demonstrates the potential of differentially private,
exploratory data analysis and confirms the efficacy of the differentially
private boxplot, in accordance with our theoretical and simulated
results.
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Conclusions

Thank you.
Differentially private boxplots.

code: https://github.com/jairoadiazr/DPBoxplot
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