

Global Convergence and Rich Feature Learning in L-Layer Infinite-Width Neural Networks under μ P Parametrization

Zixiang Chen*, Greg Yang*, Qingyue Zhao, Quanquan Gu

Can deep L-layer neural networks simultaneously achieve:

Meaningful Feature Learning

✓ Global Convergence Guarantees

Challenges

Update Rule:
$$W_t^l = W_{t-1}^l + \Delta W_t^l$$

Multiple Layer

Non Linear Activation

Background & Motivation

SP - Standard Parametrization

NTP - Neural Tangent Kernel

IP - Integrable Parametrization

μP - Maximal Update Parametrization

SP NTP IP $\mu \mathbf{P}$ Layer Init. Var. Init. Var. LR Init. Var. LR LR Init. Var. LR Input (W^1) $\eta \cdot n$ $\eta \cdot n^{-1}$ $\eta \cdot n^{-1}$ Hidden (W^l) $\eta \cdot n^{-1}$ $\eta \cdot n^{-1}$ $\eta \cdot n^{-1}$ Output (W^{L+1})

Parametrization	Feature Learning	Feature Richness
Standard (SP)	×	Rich
Neural Tangent (NTP)	×	Rich
Meanfield (IP)	\checkmark	Low
Maximal Update (μ P)	✓	Rich

Neural Networks Setup

L-layer MLP under μ P with input ξ :

$$h^1 = W^1 \xi, \quad x^l = \phi(h^l), \quad h^{l+1} = W^{l+1} x^l, \quad f(\xi) = W^{L+1} x^L$$

GOOD Activation ϕ (details omitted): Sigmoid, Tanh, SiLU, GeLU

The Limit to Infinite-width Networks

Represent features and weights via "Z" random variables:

$$h^l \to Z^{h^l(\xi)} \qquad x^l \to Z^{x^l(\xi)} \qquad W^{L+1} \to Z^{\widehat{W}^{L+1}} \quad f(\xi) \to \mathring{f}(\xi)$$

Example: each entry of h^l behave like i.i.d. copies of the random variables $Z^{h^l(\xi)}$.

Problem Setup

Data Assumptions: Input $\xi \in S$, with $|\langle \xi_i, \xi_i \rangle| \neq |\langle \xi_i, \xi_k \rangle|$ and for distinct points $|\langle \xi_i, \xi_i \rangle| \neq 0$ for any three different points $\xi_i, \xi_i, \xi_k \in S$.

Remark: It holds with probability 1 if S are drawn from some continuous distribution like mixture Gaussian.

Error Signal: error signal $\mathring{\chi}_{t,i}$ at time step t for the i-th sample. When training with SGD to minimize the loss function L this error signal is computed as $\mathring{\chi}_{t,i} = L'(\mathring{f}_t, y_i)$, where \mathring{f} is the model output and y is the label

Example: the error signal of square loss is $\mathring{\chi}_{t,i} = 2(\mathring{f}_t(\xi_i) - y_i)$.

Gradient Descent with Error Signal (last layer example)

$$Z^{\widehat{W}_{t}^{L+1}} = Z^{\widehat{W}_{0}^{L+1}} + Z^{\delta W_{1}^{L+1}} + \dots + Z^{\delta W_{t}^{L+1}}$$
$$Z^{\delta W_{t}^{L+1}} = -\eta \sum_{t=1}^{\infty} \mathring{\chi}_{t-1,i} Z^{\chi_{t-1}^{L}(\xi_{i})}$$

Main Results

Theorem (Feature Richness). For infinite-width L-layer MLP under µP, following features remain linearly independent:

Pre-activation: $Z^{h_t^l(\xi)}$,

Post-activation: $Z^{x_t^l(\xi)}$.

Corollary (Global Convergence). If the model converges at time T, then the error signal vanishes and indicates global minimum.

Why? Linear independence eliminates local minima.

Empirical Results

